Aufgabe 1.

- a) (Lese-Aufgabe) Lesen Sie den Text am Ende dieser Übungsserie. Insbesondere sollten Sie wissen wie die Fakultät und die Binomialkoeffizienten definiert sind und den binomischen Lehrsatz kennen sowie den Beweis verstanden haben.
 - Für eine detailliertere Ausführung dieser Themen empfehlen wir die Abschnitte 3.3.1, 3.3.2 und 3.3.3 im Skript von Prof. Manfred Einsiedler.
- b) Für jede reelle Zahl a > 0 definieren wir die Folge der reellen Zahlen $(x_n)_{n=0}^{\infty}$ durch $x_n = \sqrt[n]{a}$. Zeigen Sie, dass die Folge $(x_n)_{n=0}^{\infty}$ konvergiert, und dass

$$\lim_{n\to\infty} \sqrt[n]{a} = 1.$$

c) Wir definieren eine Folge von reellen Zahlen $(x_n)_{n=0}^{\infty}$ durch $x_n = \sqrt[n]{n}$. Zeigen Sie, dass diese Folge konvergiert, mit Grenzwert

$$\lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Aufgabe 2. Zeigen Sie, dass die "reziproke" Funktion $h : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ definiert durch $h(x) = \frac{1}{x}$ stetig ist.

Schliessen Sie daraus, dass Funktionen $q:D\to\mathbb{R}$ der Art

$$x \mapsto q(x) = \frac{f(x)}{g(x)} \in \mathbb{R}$$

stetig sind, wenn $D \subseteq \mathbb{R}$ eine Teilmenge und $f: D \to \mathbb{R}, g: D \to \mathbb{R} \setminus \{0\}$ stetige Funktionen sind.

Aufgabe 3. Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0 \end{cases}$$

nicht stetig ist.

Bemerkung: Wir werden die Funktion sin noch in der Vorlesung einführen. Für diese Aufgabe, Stetigkeit von sin : $\mathbb{R} \to \mathbb{R}$ und die üblichen Eigenschaften, die ihr vom Gymnasium kennt, dürfen vorausgesetzt werden.

Aufgabe 4. Zeigen Sie die folgenden Aussagen:

- (a) Sei $f:[0,1]\to [0,1]$ eine stetige Abbildung. Zeigen Sie, dass ein $x_0\in [0,1]$ existiert, so dass $f(x_0)=x_0$ gilt.
- (b) Sei $g:[0,2] \to \mathbb{R}$ eine stetige Abbildung, so dass g(0) = g(2) gilt. Zeigen Sie, dass ein $x_0 \in [0,1]$ existiert, welches $g(x_0) = g(x_0 + 1)$ erfüllt.

Aufgabe 5. Sei I ein Intervall und $f:I\to\mathbb{R}$ eine stetige, injektive Abbildung. Zeigen Sie, dass f streng monoton ist.

Aufgabe 6. Sei I ein Intervall und $f: I \to \mathbb{R}$ eine monotone Abbildung, so dass für alle $a, b \in I$ und $\xi \in \mathbb{R}$ zwischen f(a) und f(b) ein $x \in \mathbb{R}$ zwischen a und b existiert, welches $f(x) = \xi$ erfüllt. Zeigen Sie, dass f stetig ist.

Vergleichen Sie dieses Resultat mit dem Zwischenwertsatz.

Aufgabe 7. Sei $I \subseteq \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ eine Funktion. Zeigen Sie, dass f genau dann stetig ist, wenn für jede offene Menge $U \subseteq \mathbb{R}$ auch $f^{-1}(U)$ offen ist.

Aufgabe 8. Welche der folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ sind gleichmässig stetig? Überzeugen Sie sich zuerst davon, dass die jeweils gegebene Funktion stetig ist, und skizzieren Sie den Graphen.

- a) $f(x) = \sqrt{|x|}$,
- $b) f(x) = x^2,$
- c) $f(x) = \min(\sqrt{|x|}, x^2),$
- $d) f(x) = \inf_{k \in \mathbb{Z}} |x k|,$
- e) $f(x) = \inf_{k \in \mathbb{Z}} |x k^2|$
- f) $f(x) = x \cdot \inf_{k \in \mathbb{Z}} |x k|$

Material zu Aufgabe 1a).

Fakultät Die Funktion $n \in \mathbb{N}_0 \mapsto n! \in \mathbb{N}$ ist definiert durch

$$0! = 1, \ n! = \prod_{k=1}^{n} k.$$

Die Zahl n! wird als n-Fakultät oder n-Faktorielle bezeichnet.

Kombinatorische Bedeutung. Es gibt genau n! verschiedene Möglichkeiten die Menge $\{1, \ldots, n\}$ zu sortieren oder auch n! Möglichkeiten für verschiedene Reihenfolgen, wenn n nummerierte Bälle zufällig aus einer Urne gezogen werden.

Binomialkoeffizienten Für $n, k \in \mathbb{N}_0$ mit $0 \le k \le n$ definieren wir den **Binomialkoeffizienten** $\binom{n}{k}$, als "n über k" ausgesprochen, durch

$$\binom{n}{k} = \frac{n!}{k! \ (n-k)!}.$$

Ersetzen wir k bei gleichbleibendem n im Binomialkoeffizienten durch n-k, so vertauschen sich bloss die beiden Ausdrücke im Nenner und wir erhalten

$$\binom{n}{k} = \binom{n}{n-k}$$

für alle $k, n \in \mathbb{N}_0$ mit $0 \le k \le n$.

Additionsformel. Für $n \in \mathbb{N}_0$ und $k \in \mathbb{N}$ mit $1 \le k \le n$ gelten $\binom{n}{0} = \binom{n}{n} = 1$ und

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}. \tag{1}$$

Insbesondere ist $\binom{n}{k} \in \mathbb{N}$ für alle $n, k \in \mathbb{N}_0$ mit $0 \le k \le n$.

Proof. Wir verwenden die Definition der Binomialkoeffizienten und erhalten

$$\binom{n}{0} = \binom{n}{n} = \frac{n!}{0! \ n!} = 1$$

sowie

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)! (n-(k-1))!} + \frac{n!}{k! (n-k)!}$$

$$= \frac{k \ n!}{k! \ (n+1-k)!} + \frac{(n+1-k) \ n!}{k! \ (n+1-k)!}$$
$$= \frac{(k+n+1-k) \ n!}{k! \ (n+1-k)!} = \binom{n+1}{k}$$

durch Erweiterung mit k beziehungsweise n+1-k.

Die Aussage, dass $\binom{n}{k} \in \mathbb{N}$ für alle $k \in \mathbb{N}_0$ mit $0 \le k \le n$, ergibt sich aus den ersten beiden Aussagen und Induktion nach n.

Kombinatorische Bedeutung. Die Zahl $\binom{n}{k}$ für $n, k \in \mathbb{N}_0$ mit $0 \le k \le n$ ist die Anzahl Möglichkeiten k Elemente aus einer Sammlung mit n Elementen auszuwählen. Formal ausgedrückt: Es gibt genau $\binom{n}{k}$ Teilmengen von $\{1, \ldots, n\}$, die k Elemente besitzen.

Binomischer Lehrsatz Für $w, z \in \mathbb{C}$ und $n \in \mathbb{N}_0$ gilt

$$(w+z)^n = \sum_{k=0}^n \binom{n}{k} w^{n-k} z^k.$$

Beweis des binomischen Lehrsatzes. Für n = 0 gilt die Aussage, da

$$(w+z)^0 = 1 = \sum_{k=0}^{0} 1w^{0-k}z^k.$$

Angenommen die Aussage des Satzes gilt für ein $n \in \mathbb{N}_0$. Dann erhalten wir

$$(w+z)^{n+1} = (w+z)^n (w+z) = \left(\sum_{k=0}^n \binom{n}{k} w^{n-k} z^k\right) (w+z)$$

$$= \sum_{k=0}^n \binom{n}{k} w^{n+1-k} z^k + \sum_{k=0}^n \binom{n}{k} w^{n-k} z^{k+1}$$

$$= w^{n+1} + \sum_{k=1}^n \binom{n}{k} w^{n+1-k} z^k + \sum_{j=0}^{n-1} \binom{n}{j} w^{n-j} z^{j+1} + z^{n+1}$$

$$= w^{n+1} + \sum_{k=1}^n \binom{n}{k} w^{n+1-k} z^k + \sum_{k=1}^n \binom{n}{k-1} w^{n+1-k} z^k + z^{n+1}$$

$$= w^{n+1} + \sum_{k=1}^n \binom{n+1}{k} w^{n+1-k} z^k + z^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} w^{n+1-k} z^k$$

unter Verwendung einer Indexverschiebung und der Additionsformel.