Exercise 1. Let $D \subset \mathbb{R}$ be a subset. A function $f: D \rightarrow \mathbb{R}$ is called Lipschitz-stetig if there exists an $L \geq 0$ such that $|f(x)-f(y)| \leq L|x-y|$ holds for all $x, y \in D$.
a) Show that a Lipschitz continuous function is also uniformly continuous.
b) Show that the root function $[0,1] \rightarrow \mathbb{R}$ given by $x \mapsto \sqrt{x}$ is uniformly continuous but not Lipschitz continuous.
c) Show that the root function $[1, \infty) \rightarrow \mathbb{R}$ is Lipschitz continuous and uniformly continuous.

Exercise 2. Let $a \in \mathbb{R}$. Calculate the following limits:
a) $\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-x-2}{x-2}$,
b) $\lim _{x \rightarrow \infty} \frac{3 e^{2 x}+e^{x}+1}{2 e^{2 x}-1}$,
c) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{a}}$,
d) $\lim _{x \rightarrow \infty} \frac{\log (x)}{x^{a}}$.

In each case, choose a suitable domain on which the given formula defines a function.

Exercise 3.

a) Show the following asymptotics for $x \rightarrow \infty$:
i) $2 x^{3}+3 x^{2}=O\left(x^{3}\right)$
ii) $x^{p}=O(\exp (x))$ for any natural number $p>0$
iii) $\log (x)=O\left(x^{\frac{1}{p}}\right)$ for any natural number $p>0$
b) Show the following asymptotics for $x \rightarrow \infty$:
i) $x^{p}=o\left(x^{q}\right)$ for natural numbers $0<p<q$
ii) $x^{p}=o(\exp (x))$ for all natural numbers $p>0$
iii) $\log (x)=o\left(x^{p}\right)$ for all natural numbers $p>0$
c) Show the following asymptotics for $x \rightarrow 0$:
i) $x^{q}=o\left(x^{p}\right)$ for all the natural numbers $0<p<q$.
ii) $\exp (x)=1+o(1)$

Exercise 4. Find an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the limit of the sequence $(f(n))_{n=0}^{\infty}$ exists, but not the limit $\lim _{x \rightarrow \infty} f(x)$. Interpret this in terms of Lemma 3.70. and the following question: For a real number A, how does one translate the statement.

$$
\lim _{x \rightarrow \infty} f(x)=A
$$

correctly into a statement about convergence of sequences?
Hint: Exercise 8 of sheet 5 could provide inspiration for a counterexample.

Exercise 5. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers with $0 \leq a_{n}$ such that $\sum_{n=0}^{\infty} a_{n}$ converges. Show that then $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ also converges.

Exercise 6. Show that the following series of real numbers converge and calculate their values. Check your result with Wolframalpha.
a) $\sum_{n=0}^{\infty} x^{n}$ for a real number $x \in \mathbb{R}$ with $|x|<1$,
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n-1}+1}{3^{n}}$
c) $\sum_{n=k}^{\infty} \frac{1}{5^{n}}$ for $k \in \mathbb{N}$,
d) $\sum_{n=0}^{\infty} \frac{n}{5^{n}}$,
e) $\sum_{n=0}^{\infty} \frac{n^{2}}{5^{n}}$.

Exercise 7. Let $s>1$ be a real number. Use Proposition 4.14 to show that the series

$$
\sum_{n=0}^{\infty} \frac{1}{n^{s}}
$$

converges.

