Exercise 1. Calculate the derivative of the following functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$:
a) $f_{1}(x)=\sqrt{1+x^{2}}$
b) $f_{2}(x)=\cos (\cos x)$
c) $f_{3}(x)=\exp \left(\frac{1}{1+x^{4}}\right)$
d) $f_{4}(x)=\frac{e^{x}-1}{e^{x}+1}$
e) $f_{5}(x)=x^{\sin x} \quad($ defined only for $x>0)$

Exercise 2. Let $D \subseteq \mathbb{R}$ be a non-empty subset without isolated points, and let $f, g \in C^{n}(D)$. Explain why $f g \in C^{n}(D)$ holds and show

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)}
$$

Note: The aim of this exercise is to formulate the proof of Corollary 5.13.

Exercise 3. (Easy) Let a be any real number, and $f: \mathbb{R}_{>0} \rightarrow \mathbb{C}$ the function given by $f(x)=x^{a}$. Show that f is continuously differentiable and that $f^{\prime}(x)=a x^{a-1}$.

Note: In this exercise we generalise Corollary 5.14.

Exercise 4. We consider the function

$$
\begin{aligned}
f_{n}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto \operatorname{sgn}(x) x^{n+1} .
\end{aligned}
$$

for every non-negative integer $n \in \mathbb{N}_{0}$.
a) Show that f_{n} is continuous.
b) Show that the derivatives $f_{n}^{\prime}, f_{n}^{(2)}, \ldots, f_{n}^{(n)}$ exist.
c) Calculate $f_{n}^{(n)}$ and conclude that the inclusions $C^{n+1}(\mathbb{R}) \subset C^{n}(\mathbb{R})$ are strict inclusions.

Figure 1: Graph of the function of exercise 5

Exercise 5. (Hard) We consider the function $\psi: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
\psi: x \in \mathbb{R} \mapsto\left\{\begin{array}{cl}
\exp \left(-\frac{1}{x}\right) & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array}\right.
$$

Show that ψ is smooth on \mathbb{R} and that all its derivatives vanish at 0 .
Hint 1: Show by induction that for $x>0$

$$
\psi^{(n)}(x)=\exp \left(-\frac{1}{x}\right) f_{n}\left(\frac{1}{x}\right)
$$

where $f_{n}(x)$ is a polynomial.
Hint 2: To calculate the derivative at $x=0$, use that the exponential function grows faster than any polynomial i.e.

$$
\lim _{y \rightarrow \infty} \frac{y^{n}}{\exp (y)}=0
$$

and set $x=\frac{1}{y}$.

Exercise 6. (Hard) For a fixed real number a, we consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}|x|^{a} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Determine for which choice of $a \in \mathbb{R}$ the function f is continuous, differentiable or even continuously differentiable.

