Exercise 1. (Warm up with MC questions from old exams) Exactly one answer is correct.

1. The function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \max (x, 1-x)$ is
A) is not continuous.
B) continuous but not differentiable.
C) differentiable but not continuously differentiable.
D) continuously differentiable but not twice differentiable.
2. Let $a<b$. What is true for all functions $f:[a, b] \rightarrow \mathbb{R}$?
A) If f is continuous, then f is differentiable.
B) If f is monotonically increasing, then f is bounded.
C) If for every $x \in[f(a), f(b)]$ there is a $c \in[a, b]$ such that $f(c)=x$, then f is continuous.
D) If f has a maximum and a minimum, then f is continuous.

Exercise 2. Calculate the following limits using l'Hôpital's rule.
(a) $\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{2} \sin (x)}$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{\cos x-1}$
(c) $\lim _{x \rightarrow 2} \frac{x^{4}-4^{x}}{\sin \pi x}$
(d) $\lim _{x \rightarrow-\infty} x^{3} e^{x}$
(e) $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}$

Exercise 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f(x)=f^{\prime}(x)$ holds for all $x \in \mathbb{R}$. Show that a real number c exists with $f(x)=c \cdot \exp (x)$.

Exercise 4. Show that there is no differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=\operatorname{sgn}(x)$ holds for all $x \in \mathbb{R}$.

Exercise 5. (Old Exam Exercise)

a) Let $I=(a, b)$ be an interval with $a<b$ in $\overline{\mathbb{R}}$ and $f: I \rightarrow \mathbb{R}$ a differentiable function. Show that if the derivative of f is bounded, then f is Lipschitz continuous, i.e. there exists a constant $c>0$ with $|f(x)-f(y)| \leq c|x-y|$ for all $x, y \in I$.
b) Does the above statement also apply if the domain of f is not an interval? Prove or give a counterexample.

Exercise 6. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ a convex function. Show that every local minimum of f is a global minimum.

Reminder: Let $I \subseteq \mathbb{R}$ be an interval, and let $f: I \rightarrow \mathbb{R}$. Then f is called convex if for all $a, b \in I$ with $a<b$ and all $t \in(0,1)$, the inequality

$$
f((1-t) a+t b) \leq(1-t) f(a)+t f(b)
$$

is valid. We say that f is strictly convex if the inequality is strict.

Exercise 7. (Easy, part b is an old exam Exercise)
a) Show that $f: I \rightarrow \mathbb{R}$ is convex if and only if for all $x \in(a, b) \subset I$ the inequality

$$
\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(x)}{b-x}
$$

holds, and strictly convex if the above inequality is strict.
b) Let f now be a convex function $\mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \leq 2023$ for all $x \in \mathbb{R}$. Show that f is constant.

Exercise 8. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$ a convex function, $x_{1}, x_{2}, \ldots, x_{n} \in I$ and $t_{1}, t_{2}, \ldots, t_{n} \in[0,1]$ with $t_{1}+t_{2}+\cdots+t_{n}=1$. Show that

$$
f\left(t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{n} x_{n}\right) \leq t_{1} f\left(x_{1}\right)+t_{2} f\left(x_{2}\right)+\cdots+t_{n} f\left(x_{n}\right)
$$

is valid. This inequality is called Jensen's inequality.
Conclude from this that for any positive real numbers $x_{1}, x_{2}, \ldots x_{n}$ the inequalities

$$
\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} \leq \sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

apply.

