Aufgabe 1. Sei $D \subset \mathbb{R}$ eine Teilmenge. Eine Funktion $f: D \to \mathbb{R}$ heisst *Lipschitzstetig*, falls ein $L \geq 0$ existiert, so dass $|f(x) - f(y)| \leq L|x - y|$ für alle $x, y \in D$ gilt.

- a) Zeigen Sie, dass eine Lipschitz-stetige Funktion auch gleichmässig stetig ist.
- b) Zeigen Sie, dass die Wurzelfunktion $[0,1] \to \mathbb{R}$, gegeben durch $x \mapsto \sqrt{x}$ zwar gleichmässig stetig, aber nicht Lipschitz-stetig ist.
- c) Zeigen Sie, dass die Wurzelfunktion $[1,\infty)\to\mathbb{R}$ Lipschitz-stetig und gleichmässig stetig ist.

Lösung.

a) Sei $f: D \to \mathbb{R}$ eine Lipschitz-stetige Funktion mit Lipschitz-Konstante $L \geq 0$. Dann können wir für jedes $\epsilon > 0$ global (unabhängig von $x \in D$) ein $\delta > 0$ wählen, so dass $|x-y| < \delta$ die Ungleichung $|f(x)-f(y)| < \epsilon$ für alle $x,y \in D$ impliziert. Wähle dazu $\delta = \frac{\epsilon}{L}$. Dann folgt in der Tat durch die Lipschitz Bedingung, dass mit $|x-y| < \delta$ die Abschätzung

$$|f(x) - f(y)| \le L|x - y| < L\frac{\epsilon}{L} = \epsilon$$

gilt.

b) Nicht Lipschitz-stetig: Sei y=0. Falls die Wurzelfunktion Lipschitz ist, dann gibt es ein $L \geq 0$, so dass für alle $x \in (0,1]$ gilt, dass

$$\sqrt{x} = |\sqrt{x} - \sqrt{0}| \le L|x - 0| = Lx.$$

Doch aus $\sqrt{x} < Lx$ folgt $x < L^2x^2$ für alle $x \in (0,1]$. Weil wir $x \neq 0$ betrachten, können wir durch x^2 teilen und erhalten $\frac{1}{x} < L^2$ für alle $x \in (0,1]$. Doch $\frac{1}{x}$ kann beliebig gross für $x \in (0,2]$ werden. Darum kann es kein solches L geben.

Gleichmässig stetig: Haben wir schon in Aufgabe 8a) von Übungsserie 5 gesehen.

c) Lipschitz stetig: Wir behaupten, dass L=1 eine mögliche Lipschitz-Konstante für die Wurzelfunktion $[1,\infty)\to\mathbb{R}$ ist . In der Tat haben wir, dass¹

$$\left|\sqrt{x} - \sqrt{y}\right| = \frac{|x - y|}{\left|\sqrt{x} + \sqrt{y}\right|} \le |x - y|$$

gilt, da $\sqrt{x} + \sqrt{y} \ge 1$.

Gleichmässige Stetigkeit folgt mit Teilaufgabe a) aus Lipschitz-Stetigkeit.

¹Wir schreiben $x - y = (\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})$ und nehmen den Absolutbetrag auf beiden Seiten.

Aufgabe 2. Sei $a \in \mathbb{R}$. Berechnen Sie die folgenden Grenzwerte:

a)
$$\lim_{x\to 2} \frac{x^3 - x^2 - x - 2}{x - 2}$$
,

b)
$$\lim_{x\to\infty} \frac{3e^{2x} + e^x + 1}{2e^{2x} - 1}$$
,

c)
$$\lim_{x\to\infty} \frac{e^x}{x^a}$$
,

d)
$$\lim_{x\to\infty} \frac{\log(x)}{x^a}$$
.

Wählen Sie dabei in jedem Fall einen geeigneten Definitionsbereich, auf dem die angegebene Formel eine Funktion definiert.

Lösung.

a) Wenn x=2 ist, dann ist der Ausdruck $\frac{x^3-x^2-x-2}{x-2}=\frac{0}{0}$ nicht wohldefiniert. Weil x=2 eine Nullstelle von x^3-x^2-x-2 ist, faktorisieren wir

$$x^{3} - x^{2} - x - 2 = (x - 2)(x^{2} + x + 1).$$

Somit gilt $\frac{x^3 - x^2 - x - 2}{x - 2} = x^2 + x + 1$. Dann ist

$$\lim_{x \to 2} \frac{x^3 - x^2 - x - 2}{x - 2} = \lim_{x \to 2} x^2 + x + 1 = 2^2 + 2 + 1 = 7,$$

da die Funktion $x \mapsto x^2 + x + 1$ stetig ist.

b) Der Nenner $2e^{2x}=1$ verschwindet für ein eindeutiges $x_0=\frac{1}{2}\log\left(\frac{1}{2}\right)\in\mathbb{R}$. Für x grösser als x_0 verschwindet der Nenner $2e^{2x}-1$ also nicht, da e^{2x} streng monoton wachsend ist.

Wir beweisen $\lim_{x\to\infty} \frac{3e^{2x}+e^x+1}{2e^{2x}-1} = \frac{3}{2}$. Zuerst formen wir um:

$$\frac{3e^{2x}+e^x+1}{2e^{2x}-1} = \frac{\frac{3}{2}(2e^{2x}-1)+e^x+\frac{5}{2}}{2e^{2x}-1} = \frac{3}{2} + \frac{e^x+\frac{5}{2}}{2e^{2x}-1}.$$

Es reicht nun zu zeigen, dass $\lim_{x\to\infty}\frac{e^x+\frac{5}{2}}{2e^{2x}-1}=0$ ist. In der Tat ist für $x>x_0$:

$$\left| \frac{e^x + \frac{5}{2}}{2e^{2x} - 1} \right| = \frac{e^x + \frac{5}{2}}{2e^{2x} - 1} = \frac{e^x}{2e^{2x} - 1} + \frac{\frac{5}{2}}{2e^{2x} - 1}.$$

Der zweite Term kann beliebig klein gemacht werden, da der Zähler konstant bleibt und der Nenner $2e^{2x}-1$ beliebig gross sein kann. Der erste Term kann umgeschrieben werden als

$$\frac{e^x}{2e^{2x} - 1} = \frac{1}{2e^x - e^{-x}}$$

Doch e^{-x} ist kleiner als 1 für x > 0 und $2e^x$ kann beliebig gross sein.

Somit ist
$$\lim_{x \to \infty} \frac{3e^{2x} + e^x + 1}{2e^{2x} - 1} = \frac{3}{2}$$
.

c) Der Ausdruck $\frac{e^x}{x^a}$ ist definiert für x>0. Wir nehmen nun ein $n\in\mathbb{N}$ so dass n>a. Von Korollar 3.53 erhalten wir für x>1 dass

$$e^x \ge \left(1 + \frac{x}{n}\right)^n \ge \frac{x^n}{n^n}.$$

Wir erhalten also

$$\frac{e^x}{x^a} \ge \frac{x^n}{n^n x^a} = \frac{x^{n-a}}{n^n},$$

wobei $x^{n-a} = e^{(n-a)\log x}$ beliebig gross sein kann für $x \to \infty$. Somit schliessen wir $\lim_{x \to \infty} \frac{e^x}{x^a} = \infty$.

d) Der Ausdruck $\frac{\log x}{x^a}$ ist definiert für x>0. Wir unterscheiden zwei Fälle für die Berechnung des Grenzwertes.

 $a\leq 0$: Wir beweisen $\lim_{x\to\infty}\frac{\log x}{x^a}=\infty$. Für alle $x\geq 1$, erhalten wir $\frac{1}{x^a}\geq 1$. Dann gilt

$$\frac{\log x}{x^a} \ge \log x.$$

Da $\log x$ unbeschränkt mit x wächst, schliessen wir $\lim_{x\to\infty} \frac{\log x}{x^a} = \infty$.

a>0: Wir beweisen $\lim_{x\to\infty}\frac{\log(x)}{x^a}=0$. Wir können $x=e^{\frac{y}{a}}$ ersetzen, denn dann geht mit x auch y nach unendlich und umgekehrt (beachte, dass dies a>0 benutzt). Wir erhalten

$$\lim_{x\to\infty}\frac{\log(x)}{x^a}=\lim_{y\to\infty}\frac{\log(e^{\frac{y}{a}})}{(e^{\frac{y}{a}})^a}=\lim_{y\to\infty}\frac{y}{e^y}=0,$$

wovei wir den letzten Grenzwert schon in c
) berechnet haben (mit a=1 und dem reziproken Grenzwert
 $\lim_{y\to\infty}\frac{e^y}{y}$.

Aufgabe 3.

a) Zeigen Sie die folgenden Grössenordnungen für $x \to \infty$:

i)
$$2x^3 + 3x^2 = O(x^3)$$

ii) $x^p = O(\exp(x))$ für jede natürliche Zahl p > 0

- iii) $\log(x) = O(x^{\frac{1}{p}})$ für jede natürliche Zahlp>0
- b) Zeigen Sie die folgenden Grössenordnungen für $x \to \infty$:
 - i) $x^p = o(x^q)$ für natürliche Zahlen 0
 - ii) $x^p = o(\exp(x))$ für alle natürlichen Zahlen p > 0
 - iii) $\log(x) = o(x^p)$ für alle natürlichen Zahlen p > 0
- c) Zeigen Sie die folgenden Grössenordnungen für $x \to 0$:
 - i) $x^q = o(x^p)$ für alle natürlichen Zahlen 0
 - ii) $\exp(x) = 1 + o(1)$

Lösung.

a) i) Wir betrachten R=1 und M=5: Für x>1, haben wir $x^3>x^2$, somit $2x^3+3x^2<2x^3+3x^3=5x^3$

und das Resultat folgt.

ii) Wir betrachten R=0 und $M=p^p$: Für alle x>0, gilt mit Korollar 3.53

$$\frac{x^p}{p^p} = \left(\frac{x}{p}\right)^p < \left(1 + \frac{x}{p}\right)^p \le \exp(x).$$

Daher auch $x^p \leq p^p \exp(x)$ und das Resultat folgt.

- iii) Ersetzen Sie x mit $\log(x)$ in Teilaufgabe iii) und ziehen Sie die p-te Wurzel.
- b) i) Wir verwenden die äquivalente Formulierung analog zu derjenigen nach Definition 3.84 und sehen dass $\frac{x^p}{x^q}=x^{p-q}\to 0$ für $x\to\infty$ da p-q<0.
 - ii) Wir kombinieren Resultate die wir bereits gezeigt haben, nämlich $x^p = o(x^q)$ und $x^q = O(\exp(x))$ mit der folgenden Beobachtung:

Seien $f, g, h : D \to \mathbb{R}$ Funktionen so dass f(x) = o(g(x)) und g(x) = O(h(x)) für $x \to x_0$ oder $x \to \infty$. Dann ist f(x) = o(h(x)).

Beweis des Falls $x \to \infty$: Es gibt per Annahme ein M > 0 und ein R > 0 so dass $x > R \implies |g(x)| < M|h(x)|$. Sei nun $\epsilon > 0$. Wir setzen $\epsilon' = \frac{\epsilon}{M}$. Da f(x) = o(g(x)), gibt es ein R' > 0 so dass für x > R' auch $|f(x)| \le \epsilon' |g(x)|$ gilt. Wir setzen nun $\tilde{R} = \max\{R, R'\}$. Für $x > \tilde{R}$ folgt damit

$$|f(x)| \leq \epsilon' |g(x)| = \frac{\epsilon}{M} |g(x)| \leq \frac{\epsilon}{M} M |h(x)| = \epsilon |h(x)|.$$

Da $\epsilon > 0$ beliebig war, folgt also f(x) = o(h(x)).

iii) Wir verwenden die Teilaufgaben b.i) und a.iii) sowie die folgende Beobachutung:

Seien $f, g, h : D \to \mathbb{R}$ Funktionen so dass f(x) = O(g(x)) und g(x) = o(h(x)) für $x \to x_0$ oder $x \to \infty$. Dann ist f(x) = o(h(x)).

Beweis des Falls $x \to \infty$: Es gibt per Annahme ein M > 0 und ein R > 0 so dass $x > R \implies |f(x)| \le M|g(x)|$. Sei $\epsilon > 0$ und schreibe $\epsilon' = \frac{\epsilon}{M}$. Da g(x) = o(h(x)), gibt es ein R' > 0 so dass $x > R' \implies |g(x)| \le \epsilon' |h(x)|$. Wir setzen wiederum $\tilde{R} = \max\{R, R'\}$ und schliessen für $x > \tilde{R}$:

$$|f(x)| \le M|g(x)| \le M\epsilon'|h(x)| = \epsilon|h(x)|.$$

Es folgt dass f(x) = o(h(x)).

- c) i) Analog zu b.i)
 - ii) $\exp(x) = 1 + o(1)$ folgt aus der Beobachtung dass $\exp(x) 1 \to 0$ für $x \to 0$.

Aufgabe 4. Finden Sie ein Beispiel für eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ so, dass der Grenzwert der Folge $(f(n))_{n=0}^{\infty}$ existiert, aber nicht der Grenzwert $\lim_{x\to\infty} f(x)$. Interpretieren Sie dies mit Blick auf Lemma 3.70. und der folgenden Frage: Wie übersetzt man für eine reelle Zahl A die Aussage

$$\lim_{x \to \infty} f(x) = A$$

korrekt in eine Aussage über Konvergenz von Folgen?

Tipp: Aufgabe 8 von Übungsserie 5 könnte Inspiration für ein Gegenbeispiel liefern.

Lösung. Sei $f: \mathbb{R} \to \mathbb{R}$ geben durch $f(x) = \inf_{k \in \mathbb{Z}} |x - k|$. Es ist aber f(n) = 0 und $f(n + \frac{1}{2}) = \frac{1}{2}$ für alle $n \in \mathbb{Z}$. Der Grenzwert $\lim_{x \to \infty} f(x)$ existiert also nicht.

Die Korrekte Übersetzung lautet: Für eine reelle Zahl A sind die Aussagen

- $1. \lim_{x \to \infty} f(x) = A$
- 2. Für jede Folge reeller Zahlen $(x_n)_{n=0}^{\infty}$ mit $\lim_{n\to\infty} x_n = \infty$ gilt $\lim_{n\to\infty} f(x_n) = A$

äquivalent. Der Beweis ist analog zum Beweis von Theorem 3.26 wobei wir statt Folgen mit Grenzwerten $\bar{x} \in \mathbb{R}$ nun Folgen nehmen die gegen ∞ streben.

Aufgabe 5. Sei $(a_n)_{n=0}^{\infty}$ eine Folge reeller Zahlen mit $0 \le a_n$, so dass $\sum_{n=0}^{\infty} a_n$ konvergiert. Zeigen Sie, dass dann auch $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ konvergiert.

Lösung. Wir benutzen, dass aus der Ungleichung $(c-d)^2 \geq 0$ die Ungleichung $cd \leq \frac{c^2+d^2}{2}$ für alle $c,d \in \mathbb{R}$ folgt. Mit $c=a_n$ und $d=\frac{1}{n}$, ergibt das

$$\frac{\sqrt{a_n}}{n} \le \frac{a_n}{2} + \frac{1}{2n^2} =: b_n.$$

Die Folge $(b_n)_{n=0}^{\infty}$ erfüllt also $0 \le a_n \le b_n$ und $\sum_{n=0}^{\infty} b_n$ konvergiert, da $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} \frac{1}{n^2}$ beide konvergieren. Wir schliessen mit dem Majorantenkriterium dass $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ konvergiert.

Aufgabe 6. Zeigen Sie, dass die folgenden Reihen reeller Zahlen konvergieren, und berechnen Sie die Grenzwerte. Überprüfen Sie Ihr Resultat mit Wolframalpha.

- a) $\sum_{n=0}^{\infty} x^n$ für eine reelle Zahl $x \in \mathbb{R}$ mit |x| < 1,
- b) $\sum_{n=1}^{\infty} \frac{(-1)^n 2^{n-1} + 1}{3^n}$
- c) $\sum_{n=k}^{\infty} \frac{1}{5^n}$ für $k \in \mathbb{N}$,
- d) $\sum_{n=0}^{\infty} \frac{n}{5^n}$,
- e) $\sum_{n=0}^{\infty} \frac{n^2}{5^n}.$

Lösung.

a) Es gilt

$$\sum_{n=0}^{\infty} x^n = \lim_{n \to \infty} \sum_{k=0}^{n} x^k = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x}.$$

Weil |x| < 1 ist, gilt $\lim_{n \to \infty} x^n = 0$. Somit folgt

$$\lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}.$$

Die Reihe $\sum_{n=0}^{\infty} x^n$ konvergiert also mit Grenzwert $\frac{1}{1-x}$.

b) Wir formen zuerst um:

$$\frac{(-1)^n 2^{n-1} + 1}{3^n} = \frac{1}{2} \left(\frac{-2}{3}\right)^n + \frac{1}{3^n}.$$

Wie in a) haben wir zwei geometrische Reihen, da $\frac{-2}{3}$ und $\frac{1}{3}$ beide Betrag kleiner als 1 haben. Darum folgt:

$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n-1} + 1}{3^n} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{-2}{3}\right)^n + \sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{2} \cdot \frac{1}{1 - \frac{-2}{3}} + \frac{1}{1 - \frac{1}{3}} = \frac{3}{10} + \frac{3}{2} = \frac{18}{10}.$$

Weil in der Aufgabenstellung die Summe erst bei n=1 beginnt, ziehen wir noch den Term $\frac{3}{2}$ für n=0 ab. Wir erhalten also

$$\sum_{n=1}^{\infty} \frac{(-1)^n 2^{n-1} + 1}{3^n} = \frac{18}{10} - \frac{3}{2} = \frac{3}{10}.$$

c) Weil $\frac{1}{5}<1$ ist, bekommen wir wieder mit der geometrischen Reihe

$$\sum_{n=k}^{\infty} \frac{1}{5^n} = \frac{1}{5^k} \sum_{n=0}^{\infty} \frac{1}{5^n} = \frac{1}{5^k} \cdot \frac{1}{1 - \frac{1}{5}} = \frac{1}{4 \cdot 5^{k-1}}.$$

d) Die Reihe konvergiert: Wir haben, dass $\frac{n}{5^n} \leq \frac{1}{2^n}$ für alle $n \in \mathbb{N}$ gilt. Tatsächlich erhalten wir

$$\left(\frac{5}{2}\right)^n = \left(1 + \frac{3}{2}\right)^n \ge 1 + \frac{3}{2}n > n$$

durch die Bernoulli-Ungleichung. Weil $\sum\limits_{n=0}^{\infty}\frac{1}{2^n}$ konvergiert, und alle Summanden positiv sind, konvergiert auch $\sum\limits_{n=0}^{\infty}\frac{n}{5^n}$ mit dem Majorantenkriterium.

Um den Wert der Reihe zu berechnen, setzen wir $S = \sum_{n=0}^{\infty} \frac{n}{5^n}$. Dann ist

$$5S = \sum_{n=0}^{\infty} \frac{n}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{n}{5^{n-1}} = \sum_{n=0}^{\infty} \frac{n+1}{5^n} = S + \sum_{n=0}^{\infty} \frac{1}{5^n} = S + \frac{5}{4},$$

wobei wir wieder die geometrische Reihe verwendet haben. Aus $5S=S+\frac{5}{4}$ erhalten wir

$$S = \frac{5}{16}.$$

e) Die Reihe konvergiert: Wir haben, dass $\frac{n^2}{5^n} \leq \frac{1}{2^n}$ für alle $n \in \mathbb{N}$ gilt. Tatsächlich gilt

$$\left(1+\frac{3}{2}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{3}{2}\right)^k \ge 1+\frac{3}{2}n+\frac{1}{2}(n(n-1))\frac{9}{4} = \frac{9n^2}{8} - \frac{9}{8}n + \frac{3}{2}n + 1 > n^2.$$

Wie in c) folgt, dass $\sum_{n=0}^{\infty} \frac{n^2}{5^n}$ konvergiert.

Um den Wert der Reihe zu berechnen, setzen wir $\widetilde{S} = \sum_{n=0}^{\infty} \frac{n^2}{5^n}$. Mit demselben Trick wie in c) erhalten wir

$$5\widetilde{S} = \sum_{n=0}^{\infty} \frac{n^2}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{n^2}{5^{n-1}} = \sum_{n=0}^{\infty} \frac{(n+1)^2}{5^n} = \sum_{n=0}^{\infty} \frac{n^2}{5^n} + 2\sum_{n=0}^{\infty} \frac{n}{5^n} + \sum_{n=0}^{\infty} \frac{1}{5^n} = \widetilde{S} + 2S + \frac{5}{4}.$$

Aus $5\widetilde{S} = \widetilde{S} + 2\frac{5}{16} + \frac{5}{4}$ erhalten wir

$$\widetilde{S} = \frac{15}{32}.$$

 $\bf Aufgabe~7.~$ Sei s>1eine reelle Zahl. Benutzen Sie Proposition 4.14 um zu zeigen, dass die Reihe

$$\sum_{n=0}^{\infty} \frac{1}{n^s}$$

konvergiert.

Lösung. Die Folge (a_n) definiert durch $a_n = \frac{1}{n^s}$ ist monoton fallend. Mit Proposition 4.14 gilt

$$\sum_{n=0}^{\infty} \frac{1}{n^s} \text{ konvergiert } \iff \sum_{n=0}^{\infty} 2^n \frac{1}{2^{ns}} = \sum_{n=0}^{\infty} \frac{1}{2^{(s-1)n}} \text{ konvergiert.}$$

Somit erhalten wir die geometrische Reihe $\sum_{n=0}^{\infty} (2^{1-s})^n$. Diese konvergiert für s>1.