Serie 7

SYLOWSÄTZE, PERMUTATIONSGRUPPEN

38. Satz von Cauchy. Sei G eine endliche Gruppe und sei p eine Primzahl, die die Gruppenordnung von G teilt. Dann existiert ein $a \in G$ mit $\operatorname{ord}(a) = p$.

Hinweis: Verwende Faktum 3.3 aus der Vorlesung.

- **39**. Zeige, dass eine Gruppe der Ordnung 40 oder 56 nie einfach ist.
- **40**. (a) Bestimme die Anzahl aller Sylowuntergruppen der Tetraedergruppe.
 - (b) Bestimme die Anzahl aller Sylowuntergruppen der Würfelgruppe.
 - (c) Bestimme die Anzahl aller Sylowuntergruppen der Dodekaedergruppe.
- **41**. Satz von Cayley. Jede Gruppe der Ordnung n ist isomorph zu einer Untergruppe von S_n .
- **42**. (a) Zeige: Sind $\rho, \sigma \in S_n$ disjunkte Permutationen, dann gilt $(\rho \sigma)^k = \sigma^k \rho^k$ für alle $k \in \mathbb{N}$.
 - (b) Zeige: Ist ρ ein k-Zykel in S_n , dann ist $\operatorname{ord}(\rho) = k$.
 - (c) Zeige: Ist $\pi \in S_n$ ein Produkt paarweise disjunkter Zyklen der Länge k_1, \ldots, k_r , so ist $\operatorname{ord}(\pi) = \operatorname{kgV}(k_1, \ldots, k_r)$.
- **43**. Ein 2-Zykel heisst *Transposition* und eine *elementare Transposition* ist eine Transposition der Form (i, i + 1). Zeige, dass folgendes gilt:
 - (a) Jede Transposition kann als Produkt von elementaren Transpositionen geschrieben werden.
 - (b) Jeder Zykel kann als Produkt von Transpositionen geschrieben werden.
 - (c) Jeder Zykel in S_n (für $n \ge 2$) kann als ein Produkt der beiden Zyklen $(1\ 2)$ und $(1\ ...\ n)$ geschrieben werden; insbesondere ist $S_n = \langle (1\ 2),\ (1\ ...\ n) \rangle$.