Exercise 2.1.

Given a measure μ on a set X, we define the set of atoms of μ as

 $A_{\mu} := \{x \in X : \{x\} \text{ is measurable and } \mu(\{x\}) > 0\}.$

(a) Assuming that $\mu(X) < +\infty$, show that A_{μ} is at most countable.

(b) Is the same true if μ is only assumed to be σ -finite? And in general? Show it or give a counterexample.

(c) \bigstar Construct an example of measure μ on an uncountable set X such that $\mu(\{x\}) > 0$ for every $x \in X$ but $\mu(X) < \infty$. This shows that the condition of the measurability of $\{x\}$ in the definition of A_{μ} cannot be removed.

Exercise 2.2. (Upper and lower semicontinuity of measures.)

Let \mathcal{E} be a σ -algebra on a set X and $\mu : \mathcal{E} \to [0, \infty]$ a σ -additive function on \mathcal{E} . For a sequence $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{E}$,

(a) show that

$$\mu\left(\liminf_{n\to\infty}A_n\right)\leq\liminf_{n\to\infty}\mu(A_n).$$

(b) show that also

$$\limsup_{n \to \infty} \mu(A_n) \le \mu\left(\limsup_{n \to \infty} A_n\right)$$

holds provided that $\mu(X) < \infty$.

Exercise 2.3.

Let \mathcal{E} be a σ -algebra on a set X and $\mu : \mathcal{E} \to [0, \infty]$ a σ -additive function on \mathcal{E} . Which of the following are true for an arbitrary sequence $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{E}$? (a) Whenever $B\subseteq \bigcup_{n=1}^{\infty}A_n$,

$$\mu(B) \le \sum_{n=1}^{\infty} \mu(A_n).$$

(b)

$$\limsup_{n \to \infty} A_n^c = \left(\liminf_{n \to \infty} A_n\right)^c.$$

(c)
$$\mu\left(\liminf_{n\to\infty}A_n\right) = \liminf_{n\to\infty}\mu(A_n).$$

(d)
$$\limsup_{n \to \infty} \mu(A_n) \le \mu\left(\limsup_{n \to \infty} A_n\right)$$

1/2

Exercise 2.4. \bigstar

Let $\mu : \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ be a measure with the following property: there is a real number s > n such that for every $x \in \mathbb{R}^n$ and r > 0,

 $\mu(B(x,r)) \le r^s.$

Show that $\mu \equiv 0$. Here $B(x, r) = \{y \in \mathbb{R}^n : |y - x| < r\}$ denotes the open ball with center x and radius r in \mathbb{R}^n .