Exercise 3.1.

Denote by λ the Lebesgue measure on \mathbb{R} . Let $E \subset [0,1]$ be a Lebesgue measurable set of strictly positive measure, i.e. $\lambda(E) > 0$. Show that for any $0 \le \delta \le \lambda(E)$, there exists a measurable subset of E having measure exactly δ . **Hint**: Consider the function $t \in [0, 1] \mapsto \lambda([0, t] \cap E)$

Hint: Consider the function $t \in [0, 1] \mapsto \lambda([0, t] \cap E)$.

Exercise 3.2. Let $\mu : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ be the function

$$\mu(A) := \sqrt{\mathcal{L}^1(A)}$$

for $A \subseteq \mathbb{R}$, where \mathcal{L}^1 denotes the Lebesgue measure. (a) Show that μ is a measure.

(b) \bigstar What is the σ -algebra of μ -measurable sets?

Exercise 3.3.

Recall that the system of elementary sets is defined as

 $\mathcal{A} := \{ A \subset \mathbb{R}^n \mid A \text{ is the union of finitely many disjoint intervals} \}.$

(a) Prove that \mathcal{A} is an algebra. To simplify the notation you may assume that n = 1.

(b) \bigstar Show that the volume function vol introduced in the lecture¹ for elementary sets is a pre-measure.

Remark: For $I = I_1 \times \ldots \times I_n$ an interval in \mathbb{R}^n , its volume is defined by

$$\operatorname{vol}(I) = \prod_{k=1}^{n} \operatorname{vol}(I_k),$$

where for an interval $I_k \subseteq \mathbb{R}$, $\operatorname{vol}(I_k)$ is the length of I_k .

¹Definition 1.3.1 in the Lecture Notes.

Exercise 3.4.

(a) Let X be any set with more than one element and consider the measure $\mu : \mathcal{P}(X) \to [0, +\infty]$ defined by:

$$\mu(A) = \begin{cases} 1 & \text{if } A \neq \emptyset \\ 0 & \text{else} \end{cases}.$$

Give an example of a non- μ -measurable subset.

(b) Define \mathcal{A} to be the algebra in \mathbb{R} generated by the half-closed intervals of the form [a, b] for every $-\infty \leq a < b \leq \infty$. Note that any element in \mathcal{A} can be expressed as the disjoint union of finitely many intervals of the type described before. Moreover, we define:

$$\lambda : \mathcal{A} \to [0, +\infty], \quad \lambda(A) = \begin{cases} +\infty & \text{if } A \neq \emptyset\\ 0 & \text{else} \end{cases}$$

Check that λ is a pre-measure and find two distinct Carathéodory-Hahn extensions of λ , i.e. two measures on $\mathcal{P}(\mathbb{R})$ which coincide with λ on \mathcal{A} . Why does this not yield a contradiction to the uniqueness statement Theorem 1.2.21 of the Lecture Notes?

Exercise 3.5.

Let μ be a measure on \mathbb{R}^n and $A, B_1, B_2, \ldots \subset \mathbb{R}^n$ be such that $A \subseteq \limsup_{k \to \infty} B_k$ and $\sum_{k=1}^{\infty} \mu(B_k) < \infty$. Which of the following statements are true? (a) $\mu(A) > 0$.

(b) $\mu(A) = 0.$

(c) Every point of A belongs to infinitely many of the B_k .

(d) Every point of A belongs to all except possibly finitely many of the B_k .