D-MATH	Analysis III (Measure Theory)	ETH Zürich
Prof. Francesca Da Lio	Sheet 4	HS 2023

Exercise 4.1.

Prove that the Lebesgue measure is invariant under translations, reflections and rotations, i.e. under all motions of the form

 $\Phi: \mathbb{R}^n \to \mathbb{R}^n, \quad \Phi(x) = x_0 + Rx,$

for $x_0 \in \mathbb{R}^n$ and $R \in O(n)$.

Hint: You may use the invariance of the Jordan measure, see Satz 9.3.2 in Struwe's lecture notes.

Exercise 4.2.

Which of the following statements are correct?

(a) Every countable subset of \mathbb{R} is a Borel set.

- (b) Every countable subset of \mathbb{R} is Jordan-measurable.
- (c) Every countable subset of \mathbb{R} has Lebesgue measure zero.

(d) Every countable subset of \mathbb{R} has inner Jordan measure zero.

(e) Every countable subset of \mathbb{R} has outer Jordan measure zero

Exercise 4.3.

(a) Let $A \subset \mathbb{R}$ be a subset with Lebesgue measure $\mathcal{L}^1(A) > 0$. Show that there exists a subset $B \subset A$ which is **not** \mathcal{L}^1 -measurable.

(b) Find an example of a countable, pairwise disjoint collection $\{E_k\}_k$ of subsets in \mathbb{R} , such that

$$\mathcal{L}^1\Big(\bigcup_{k=1}^{\infty} E_k\Big) < \sum_{k=1}^{\infty} \mathcal{L}^1(E_k).$$

Exercise 4.4. \bigstar

Show that the open ball $B(x,r) := \{y \in \mathbb{R}^n \mid |y-x| < r\}$ and the closed ball $\overline{B(x,r)} := \{y \in \mathbb{R}^n \mid |y-x| \le r\}$ in \mathbb{R}^n are Jordan measurable with Jordan measure $c_n r^n$, for some constant $c_n > 0$ depending only on n.