Exercise 5.1.

Fix some $0 < \beta < 1/3$ and define $I_1 = [0, 1]$. For every $n \ge 1$, let $I_{n+1} \subset I_n$ be the collection of intervals obtained removing from every interval in I_n its centered open subinterval of length β^n . Then define by $C_\beta = \bigcap_{n=1}^{\infty} I_n$, the *fat Cantor set* corresponding to β . Show that:

(a) C_{β} is Lebesgue measurable with measure $\mathcal{L}^1(C_{\beta}) = 1 - \frac{\beta}{1-2\beta}$.

(b) C_{β} is not Jordan measurable. Indeed it holds $\underline{\mu}(C_{\beta}) = 0$ and $\overline{\mu}(C_{\beta}) = 1 - \frac{\beta}{1-2\beta} > 0$.

Exercise 5.2.

The goal of this exercise is to show that the Cantor triadic set C is uncountable. For that, recall quickly the construction of C: Every $x \in [0, 1]$ can be expanded in base 3, i.e., can be written as $x = \sum_{i=1}^{\infty} d_i(x)3^{-i}$ for $d_i(x) \in \{0, 1, 2\}$. The set C is then defined as the set of those $x \in [0, 1]$ that do not have any digit 1 in their 3-expansion, i.e.:,

$$C := \{ x \in [0,1] \mid d_i(x) \in \{0,2\}, \forall i \in \mathbb{N} \}.$$

Now, the Cantor-Lebesgue function F is defined by

$$F: C \to [0, 1], \quad F\left(\sum_{i=1}^{\infty} \frac{a_i}{3^i}\right) := \sum_{i=1}^{\infty} \frac{a_i}{2^{i+1}}.$$

- (a) Show that F(0) = 0 and F(1) = 1.
- (b) Show that F is well-defined and continuous on C.
- (c) Show that F is surjective.
- (d) Conclude that C is uncountable.

Exercise 5.3.

Which of the following statements are true?

(a) There is a subset $A \subset \mathbb{R}$ which is not Lebesgue-measurable but such that the set $B := \{x \in A : x \text{ is irrational}\}$ is Lebesgue-measurable.

(b) There exist two disjoint sets $A, B \subset \mathbb{R}^n$ which are not \mathcal{L}^n -measurable but whose union is \mathcal{L}^n -measurable.

(c) If the boundary of $\Omega \subset \mathbb{R}^n$ has \mathcal{L}^n -measure zero, then Ω is \mathcal{L}^n -measurable.

(d) Let $A \subset [0,1]$ be a set which is not \mathcal{L}^1 -measurable. Then the set $B := \{(x,x) : x \in A\} \subset \mathbb{R}^2$ is not \mathcal{L}^2 -measurable.

D-MATH	Analysis III (Measure Theory)	ETH Zürich
Prof. Francesca Da Lio	Sheet 5	HS 2023

Exercise 5.4.

In this exercise we want to prove that there is a one-to-one correspondence between the nondecreasing left-continuous¹ functions F on \mathbb{R} with F(0) = 0 and the Borel measures on \mathbb{R} that are finite on bounded Borel sets.

(a) Given any nondecreasing left-continuous function $F : \mathbb{R} \to \mathbb{R}$, show that the Lebesgue-Stieltjes measure Λ_F generated by F is the unique Borel measure on \mathbb{R} that is equal to F(b) - F(a) on [a, b). Namely, for every other Borel measure μ on \mathbb{R} such that $\mu([a, b)) = F(b) - F(a)$ we have that μ coincides with Λ_F on the Borel σ -algebra $\mathcal{B}(\mathbb{R})$.

(b) Conversely, given any Borel measure μ on \mathbb{R} that is finite on all bounded Borel sets, the function $F : \mathbb{R} \to \mathbb{R}$ defined as

$$F(x) = \begin{cases} \mu([0, x)) & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\mu([x, 0)) & \text{if } x < 0 \end{cases}$$

is nondecreasing and left-continuous and μ coincides with Λ_F on the Borel σ -algebra $\mathcal{B}(\mathbb{R})$.

¹A function $F : \mathbb{R} \to \mathbb{R}$ is left-continuous if $\lim_{x \to a^-} F(x) = F(a)$ for every $a \in \mathbb{R}$.