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Exercise 10.1. ♣
Which of the following statements are true?
(a) Let {fk} be a sequence of nonnegative L1-measurable functions on R converging uni-
formly to a function f . Then limk→∞

∫
R fk dL

1 exists and∫
R
f dL1 ≤ lim

k→∞

∫
R
fk dL1.

(b) Let fk : [0, 1] → [0, 1] be L1-measurable functions for k = 1, 2, . . . and suppose that
fk → f almost everywhere. Then limk→∞

∫
[0,1]

fk dL1 exists and∫
[0,1]

f dL1 ≤ lim
k→∞

∫
[0,1]

fk dL1.

(c) Let f be L1-summable on R and E1 ⊆ E2 ⊆ E3 ⊆ · · · be L1-measurable subsets of R.
Then the limit limn→∞

∫
En

f dL1 exists.

(d) Let {fn} be a sequence of continuous Lebesgue-summable functions on [0,∞) which
converges to a Lebesgue-summable function f . Then

lim
n→∞

∫
[0,∞)

|fn(x)− f(x)| L1(x) = 0.

Exercise 10.2.
Let f : R → [0,+∞] be L1-measruable. Assume that for all n ≥ 1,∫

R

n2

n2 + x2
|f(x)| dL1(x) ≤ 1.

Show that ∫
R
|f | dL1 ≤ 1.

Exercise 10.3.
Compute the limit

lim
n→∞

∫
[0,n]

(
1 +

x

n

)n

e−2x dx.
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Exercise 10.4. ⋆
Let fk, f be L1-summable functions on R which are nonnegative L1-almost everywhere and
satisfy the following additional hypotheses:

• lim infk→∞ fk(x) ≥ f(x) for L1-a.e. x ∈ R.

• lim supk→∞
∫
R fk(x) dx ≤

∫
R f(x) dx.

Show that

lim
k→∞

∫
R
|fk(x)− f(x)| dx = 0.

Exercise 10.5. ⋆
Let 0 < m < M < ∞ be two real numbers and let f : [0, 1] → R be a measurable function
satisfying m ≤ f(x) ≤ M for almost every x ∈ [0, 1]. Show that(∫

[0,1]

f(x) dx

)(∫
[0,1]

1

f(x)
dx

)
≤ (m+M)2

4mM

and characterize all functions for which equality holds.

Exercise 10.6.
For all n ∈ N, let fn : [0, 1] → R be defined by:

fn(x) =
n
√
x

1 + n2x2
.

Prove that:
(a) fn(x) ≤ 1√

x
on (0, 1] for all n ≥ 1.

(b) lim
n→∞

∫ 1

0

fn(x)dx = 0.
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