Exercise 11.1.

(a) Let $\{f_k\}$ be a sequence of \mathcal{L}^1 -measurable functions on [0, 1] converging a.e. to a function f and such that $|f_k| \leq 100$ a.e. for each k. Is it true that

$$\lim_{k \to \infty} \int_{[0,1]} |f_k - f| \, dx = 0?$$

(b) Compute the limit

$$\lim_{k \to \infty} k \int_0^\infty e^{-kx} \sqrt{|\cos(x)|} \, dx.$$

(c) What is the value of the limit

$$\lim_{k \to \infty} \int_0^\infty e^{-x^k} \, dx?$$

(A) 0. (B) 1. (C) ∞ . (D) None of the previous answers is correct.

(d) Let $f: \Omega \to [0,1]$ be a μ -measurable function with $\int_{\Omega} f \, d\mu > 0$. Is it true that

$$\lim_{k \to \infty} \int_{\Omega} f^{1/k} \, d\mu > 0?$$

Exercise 11.2. Compute the limit

$$\lim_{n \to \infty} \int_a^{+\infty} \frac{n}{1 + n^2 x^2} \, dx$$

for every $a \in \mathbb{R}$.

Hint: recall that $\arctan x$ is a primitive of $\frac{1}{1+x^2}$.

Exercise 11.3.

Let μ be a Radon measure on \mathbb{R}^n , $\Omega \subset \mathbb{R}^n$ be μ -measurable and $f: \Omega \to [0, +\infty]$ be μ summable. For all μ -measurable subsets $A \subset \Omega$ define (see Section 3.5 in the Lecture Notes)

$$\nu(A) = \int_A f d\mu.$$

(a) Prove that ν is a pre-measure on the σ -algebra of μ -measurable sets, hence we can define its Carathéodory-Hahn extension $\nu : \mathcal{P}(\Omega) \to [0, +\infty]$.

(b) Show that ν is a Radon measure.

(c) Prove that $\Sigma_{\nu} \supseteq \Sigma_{\mu}$ and that ν is absolutely continuous with respect to μ , that is, if $\mu(A) = 0$ then $\nu(A) = 0$.

Exercise 11.4.

Prove the following assertions.

(a) Let $f: [a, +\infty) \to \mathbb{R}$ be a locally bounded function and locally Riemann integrable. Then f is \mathcal{L}^1 -summable if and only if f is absolutely Riemann integrable in the generalized sense (namely $\mathcal{R} \int_a^\infty |f(x)| dx = \lim_{j \to \infty} \mathcal{R} \int_a^j |f(x)| dx$ exists and it is finite) and in this case

$$\int_{[a,+\infty)} f(x) d\mathcal{L}^1 = \mathcal{R} \int_a^\infty f(x) dx = \lim_{j \to +\infty} \mathcal{R} \int_a^j f(x) dx.$$

(b) Let $f: [0, +\infty) \to \mathbb{R}$ be the function $f(x) = \frac{\sin x}{x}$, which is locally bounded and locally Riemann integrable. Show that f is Riemann integrable, i.e. $\mathcal{R} \int_0^\infty f(x) dx < +\infty$ but not absolutely Riemann integrable, i.e. $\mathcal{R} \int_0^\infty |f(x)| dx = \infty$. Hence f is not \mathcal{L}^1 -summable.

Exercise 11.5.

This exercise is a more general version of Theorem 3.4.1 from the lecture notes. (a) Let μ be a Radon measure on \mathbb{R}^n and let $\Omega \subset \mathbb{R}^n$ be a μ -measurable subset. Consider a function $f: \Omega \times (a, b) \to \mathbb{R}$, for some interval $(a, b) \subset \mathbb{R}$, such that:

- the map $x \mapsto f(x, y)$ is μ -summable for all $y \in (a, b)$;
- the map $y \mapsto f(x, y)$ is differentiable in (a, b) for every $x \in \Omega$;
- there is a μ -summable function $g: \Omega \to [0, \infty]$ such that $\sup_{a < y < b} \left| \frac{\partial f}{\partial y}(x, y) \right| \le g(x)$ for all $x \in \Omega$.

Then $y \mapsto \int_{\Omega} f(x, y) d\mu(x)$ is differentiable in (a, b) with

$$\frac{d}{dy}\left(\int_{\Omega}f(x,y)d\mu(x)\right) = \int_{\Omega}\frac{\partial f}{\partial y}(x,y)d\mu(x)$$

for all $y \in (a, b)$.

(b) \bigstar Compute the integral

$$\phi(y) := \int_{(0,\infty)} e^{-x^2 - y^2/x^2} d\mathcal{L}^1(x)$$

for all y > 0.

Hint: use part (a) to obtain that ϕ solves the Cauchy problem

$$\begin{cases} \phi'(y) = -2\phi(y) & \text{for } y > 0\\ \lim_{y \to 0^+} \phi(y) = \sqrt{\pi}/2. \end{cases}$$

Exercise 11.6.

Let μ be a Radon measure on \mathbb{R}^n , $\Omega \subset \mathbb{R}^n$ a μ -measurable set with $\mu(\Omega) < +\infty$ and $f, f_k : \Omega \to \overline{\mathbb{R}} \mu$ -summable functions.

(a) Show that Vitali's Theorem implies Dominated Convergence Theorem.

(b) Let $\Omega = [0, 1]$ and $\mu = \mathcal{L}^1$. Give an example in which Vitali's Theorem can be applied but Dominated Convergence Theorem cannot, i.e., a dominating function does not exist.

Hint: look at the functions $f_n^k(x) = \frac{1}{x}\chi_{\left[\frac{n+k-1}{n2^{n+1}},\frac{n+k}{n2^{n+1}}\right]}(x)$ for $n \in \mathbb{N}, 1 \le k \le n$.