Exercise 1. (9 points)
For all of these questions there is one correct answer. For each part, 3 points are awarded if correct, 0 points if not.
(a) Let $E \subset \mathbb{R}$ be a set with $\mathcal{L}^{1}(E)=0$. Which of the following statements is correct?
(A) E must be at most countable.
(B) E must be Lebesgue-measurable.
(C) E must be bounded.
(D) E must be an element of the Borel σ-algebra.
(b) The value of the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1 / n} \frac{e^{n x}}{\sqrt{x}} d x
$$

is
(A) 0 .
(B) 1 .
(C) 2 .
(D) ∞.
(c) Let $\left\{f_{j}\right\}$ be a sequence of real-valued \mathcal{L}^{1}-measurable functions on $[0,1]$ converging pointwise \mathcal{L}^{1}-almost everywhere to a function $f:[0,1] \rightarrow \mathbb{R}$. Which one of the following assertions is FALSE?
(A) If $\left|f_{j}\right| \leq K$ for some $K>0$, then $f_{j} \rightarrow f$ in L^{1}.
(B) There is a set $A \subset[0,1]$ with $\mathcal{L}^{1}(A)=1 / 2$ such that $f_{j} \rightarrow f$ uniformly in A.
(C) If all f_{j} are in L^{1}, then $f_{j} \rightarrow f$ in L^{1}.
(D) $f_{j} \rightarrow f$ in measure.

Exercise 2. (10 points)
The goal of this exercise is to construct a subset of $[0,1)$ which is not \mathcal{L}^{1}-measurable. We will use the binary operation $\oplus:[0,1) \times[0,1) \rightarrow[0,1)$, defined by

$$
x \oplus y= \begin{cases}x+y, & \text { if } x+y<1 \\ x+y-1, & \text { if } x+y \geq 1\end{cases}
$$

Moreover we define $E \oplus x:=\{a \oplus x: a \in E\}$ for $E \subseteq[0,1)$ and $x \in[0,1)$.
(a) (4p) Show that if E is \mathcal{L}^{1}-measurable, then so is $E \oplus x$ for any $x \in[0,1)$ and $\mathcal{L}^{1}(E)=$ $\mathcal{L}^{1}(E \oplus x)$.
(b) (2p) Apply the axiom of choice in order to construct a set $P \subseteq[0,1)$ with the property that, for any real number z, there exists exactly one rational number $r \in \mathbb{Q}$ such that $z-r \in P$.
(c) (4p) Show that any set P with this property is not \mathcal{L}^{1}-measurable.

Exercise 3. (11 points)
(a) (4p) For two functions $f, g \in L^{1}\left(\mathbb{R}^{n}, d x\right)$, define $f \star g$ and show that

$$
\|f \star g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}} .
$$

For each $r>0$, let $\rho_{r}:=\mathcal{L}^{n}\left(B_{r}\right)^{-1} \chi_{B_{r}}$, where $B_{r}=B(0, r) \subset \mathbb{R}^{n}$.
(b) (3p) Show that if $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and compactly supported, then $\| g \star \rho_{r}-$ $g \|_{L^{1}} \rightarrow 0$ as $r \rightarrow 0$.
(c) (4p) Show that, for any $f \in L^{1}\left(\mathbb{R}^{n}\right)$, there is a sequence $r_{k} \rightarrow 0$ such that

$$
f \star \rho_{r_{j}}(z) \xrightarrow{j \rightarrow \infty} f(z)
$$

for \mathcal{L}^{n}-a.e. $z \in \mathbb{R}^{n}$. Hint: you may use the fact that continuous and compactly supported functions are dense in $L^{1}\left(\mathbb{R}^{n}\right)$.

