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Exercise 1. (9 points)
For all of these questions there is one correct answer. For each part, 3 points are awarded
if correct, 0 points if not.

(a) Let E ⊂ R be a set with L1(E) = 0. Which of the following statements is correct?

(A) E must be at most countable.

(B) E must be Lebesgue-measurable.

(C) E must be bounded.

(D) E must be an element of the Borel σ-algebra.

(b) The value of the limit

lim
n→∞

∫ 1/n

0

enx√
x
dx

is

(A) 0. (B) 1. (C) 2. (D) ∞.

(c) Let {fj} be a sequence of real-valued L1-measurable functions on [0, 1] converging point-
wise L1-almost everywhere to a function f : [0, 1] → R. Which one of the following assertions
is FALSE?

(A) If |fj| ≤ K for some K > 0, then fj → f in L1.

(B) There is a set A ⊂ [0, 1] with L1(A) = 1/2 such that fj → f uniformly in A.

(C) If all fj are in L1, then fj → f in L1.

(D) fj → f in measure.
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Exercise 2. (10 points)
The goal of this exercise is to construct a subset of [0, 1) which is not L1-measurable. We
will use the binary operation ⊕ : [0, 1)× [0, 1) → [0, 1), defined by

x⊕ y =

{
x+ y, if x+ y < 1

x+ y − 1, if x+ y ≥ 1.

Moreover we define E ⊕ x := {a⊕ x : a ∈ E} for E ⊆ [0, 1) and x ∈ [0, 1).

(a) (4p) Show that if E is L1-measurable, then so is E ⊕ x for any x ∈ [0, 1) and L1(E) =
L1(E ⊕ x).

(b) (2p) Apply the axiom of choice in order to construct a set P ⊆ [0, 1) with the property
that, for any real number z, there exists exactly one rational number r ∈ Q such that
z − r ∈ P .

(c) (4p) Show that any set P with this property is not L1-measurable.

Exercise 3. (11 points)

(a) (4p) For two functions f, g ∈ L1(Rn, dx), define f ⋆ g and show that

∥f ⋆ g∥L1 ≤ ∥f∥L1∥g∥L1 .

For each r > 0, let ρr := Ln(Br)
−1χBr , where Br = B(0, r) ⊂ Rn.

(b) (3p) Show that if g : Rn → R is continuous and compactly supported, then ∥g ⋆ ρr −
g∥L1 → 0 as r → 0.

(c) (4p) Show that, for any f ∈ L1(Rn), there is a sequence rk → 0 such that

f ⋆ ρrj(z)
j→∞−−−→ f(z)

for Ln-a.e. z ∈ Rn. Hint: you may use the fact that continuous and compactly supported
functions are dense in L1(Rn).
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