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Exercise 2.1.
Given a measure µ on a set X, we define the set of atoms of µ as

Aµ := {x ∈ X : {x} is measurable and µ({x}) > 0}.

(a) Assuming that µ(X) < +∞, show that Aµ is at most countable.

Solution: For each n ∈ Z+ let A(n) be the set of x ∈ X such that {x} is measurable and
µ({x}) ≥ 1

n . We will show that #(A(n)) ≤ nµ(X) < +∞. Indeed, if it were not the case we could
find a finite set F ⊂ A(n) with more than nµ(X) elements, to which we can apply the additivity
of µ:

µ(X) <
1

n
#(F ) ≤

∑
x∈F

µ({x}) = µ

(⋃
x∈F

{x}

)
= µ(F ) ≤ µ(X) < +∞,

which is a contradiction. Therefore A(n) is finite for each n, and Aµ =
⋃

n∈Z+ A(n) is a countable
union of finite sets, thus is countable.

(b) Is the same true if µ is only assumed to be σ-finite? And in general? Show it or give a
counterexample.

Solution: The statement still holds true X is σ-finite: one can write X =
⋃

k∈Z+ Xk with Xk ⊂ X
µ-measurable and µ(Xk) < +∞ and deduce as above that for each k, the set Aµ ∩ Xk is finite.
Then

Aµ =
⋃

k∈Z+

(Aµ ∩Xk)

is a countable union of countable sets and therefore countable.

However without the σ-finiteness assumption the statement is false: consider any uncountable set
X (for example X = R) together with the counting measure #. Then every singleton is measurable
and has positive measure.

(c) ⋆ Construct an example of measure µ on an uncountable set X such that µ({x}) > 0
for every x ∈ X but µ(X) < ∞. This shows that the condition of the measurability of {x}
in the definition of Aµ cannot be removed.

Solution: Let X be any uncountable set (for example X = R) and consider the measure µ defined
by

µ(E) =

{
0, E = ∅
1, E ̸= ∅

(see Exercise 1.2.13, part 3, in the lecture notes.) Then µ(X) = 1 < ∞ but µ({x}) = 1 > 0 for
every x ∈ X. However only the sets ∅ and X are measurable.

Exercise 2.2. (Upper and lower semicontinuity of measures.)
Let E be a σ-algebra on a set X and µ : E → [0,∞] a σ-additive function on E . For a
sequence {An}n∈N ⊂ E ,
(a) show that

µ
(
lim inf
n→∞

An

)
≤ lim inf

n→∞
µ(An).
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Solution: Recall that lim infn→∞An is the increasing union
⋃

n≥1

⋂
m≥nAm. Therefore it holds

that

µ
(
lim inf
n→∞

An

)
= µ

⋃
n≥1

⋂
m≥n

Am

 = lim
n→∞

µ

 ⋂
m≥n

Am

 .

On the other hand, since
⋂

m≥nAm ⊆ An, it holds that µ(
⋂

m≥nAm) ≤ µ(An), thus passing to the
lim inf we get

µ
(
lim inf
n→∞

An

)
= lim

n→∞
µ

 ⋂
m≥n

Am

 ≤ lim inf
n→∞

µ(An).

(b) show that also

lim sup
n→∞

µ(An) ≤ µ

(
lim sup
n→∞

An

)
holds provided that µ(X) < ∞.

Solution: Similarly, lim supn→∞An is the decreasing intersection
⋂

n≥1

⋃
m≥nAm. Assuming that

µ(X) < ∞, it holds that

µ

(
lim sup
n→∞

An

)
= µ

⋂
n≥1

⋃
m≥n

Am

 = lim
n→∞

µ

 ⋃
m≥n

Am

 .

Analogously, since
⋃

m≥nAm ⊇ An, we see that µ(
⋃

m≥nAm) ≥ µ(An), thus we can take the lim
sup on both sides and conclude

µ

(
lim sup
n→∞

An

)
= lim

n→∞
µ

 ⋃
m≥n

Am

 ≥ lim sup
n→∞

µ(An).

Exercise 2.3. ♣
Let E be a σ-algebra on a set X and µ : E → [0,∞] a σ-additive function on E . Which of
the following are true for an arbitrary sequence {An}n∈N ⊂ E?
(a) Whenever B ⊆

⋃∞
n=1An,

µ(B) ≤
∞∑
n=1

µ(An). !

(b)

lim sup
n→∞

Ac
n =

(
lim inf
n→∞

An

)c
. !

(c)

µ
(
lim inf
n→∞

An

)
= lim inf

n→∞
µ(An). %
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(d)

lim sup
n→∞

µ(An) ≤ µ

(
lim sup
n→∞

An

)
. %

Exercise 2.4. ⋆
Let µ : P(Rn) → [0,∞] be a measure with the following property: there is a real number
s > n such that for every x ∈ Rn and r > 0,

µ(B(x, r)) ≤ rs.

Show that µ ≡ 0. Here B(x, r) = {y ∈ Rn : |y− x| < r} denotes the open ball with center x
and radius r in Rn.

Solution: The key idea is to use cubes instead of squares. Given a cube Q = [a1, a1 + ℓ] × · · · ×
[an, an+ℓ] ⊂ Rn, it is easy to see that it is contained in the ball B(x, r) where x = (a1+ℓ/2, . . . , an+
ℓ/2) and r is any number bigger than

√
nℓ/2. Therefore, by the monotonicity property of µ, our

assumption implies that

µ(Q) ≤ µ(B(x, r)) ≤
(√

nℓ

2

)s

= Cℓs,

where C is just a constant that depends on n and s.

Now given any cube Q = [a1, a1 + ℓ] × · · · × [an, an + ℓ] and any number k, decompose Q into kn

cubes of sidelength ℓ/k in the obvious way. That is, the new cubes will be indexed by n integers
i1, . . . , in ∈ {0, . . . , k − 1} and

Qi1,...,in = [a1 + i1ℓ/k, a1 + (i1 + 1)ℓ/k]× · · · × [an + inℓ/k, an + (in + 1)ℓ/k].

Hence by the subadditivity of the measure,

µ(Q) ≤
∑

(i1,...,in)∈{0,...,k−1}n
µ(Qi1,...,in) ≤

∑
(i1,...,in)∈{0,...,k−1}n

Cℓs = kn
(
ℓ

k

)s

= kn−sℓs.

Letting k → ∞ the right hand side tends to zero because s > n. Hence any cube has measure zero,
and since Rn is a union of cubes, µ ≡ 0.
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