Exercise 2.1.

Given a measure μ on a set X, we define the set of atoms of μ as

$$
A_{\mu}:=\{x \in X:\{x\} \text { is measurable and } \mu(\{x\})>0\}
$$

(a) Assuming that $\mu(X)<+\infty$, show that A_{μ} is at most countable.

Solution: For each $n \in \mathbb{Z}^{+}$let $A(n)$ be the set of $x \in X$ such that $\{x\}$ is measurable and $\mu(\{x\}) \geq \frac{1}{n}$. We will show that $\#(A(n)) \leq n \mu(X)<+\infty$. Indeed, if it were not the case we could find a finite set $F \subset A(n)$ with more than $n \mu(X)$ elements, to which we can apply the additivity of μ :

$$
\mu(X)<\frac{1}{n} \#(F) \leq \sum_{x \in F} \mu(\{x\})=\mu\left(\bigcup_{x \in F}\{x\}\right)=\mu(F) \leq \mu(X)<+\infty
$$

which is a contradiction. Therefore $A(n)$ is finite for each n, and $A_{\mu}=\bigcup_{n \in \mathbb{Z}^{+}} A(n)$ is a countable union of finite sets, thus is countable.
(b) Is the same true if μ is only assumed to be σ-finite? And in general? Show it or give a counterexample.

Solution: The statement still holds true X is σ-finite: one can write $X=\bigcup_{k \in \mathbb{Z}^{+}} X_{k}$ with $X_{k} \subset X$ μ-measurable and $\mu\left(X_{k}\right)<+\infty$ and deduce as above that for each k, the set $A_{\mu} \cap X_{k}$ is finite. Then

$$
A_{\mu}=\bigcup_{k \in \mathbb{Z}^{+}}\left(A_{\mu} \cap X_{k}\right)
$$

is a countable union of countable sets and therefore countable.
However without the σ-finiteness assumption the statement is false: consider any uncountable set X (for example $X=\mathbb{R}$) together with the counting measure \#. Then every singleton is measurable and has positive measure.
(c) \star Construct an example of measure μ on an uncountable set X such that $\mu(\{x\})>0$ for every $x \in X$ but $\mu(X)<\infty$. This shows that the condition of the measurability of $\{x\}$ in the definition of A_{μ} cannot be removed.
Solution: Let X be any uncountable set (for example $X=\mathbb{R}$) and consider the measure μ defined by

$$
\mu(E)= \begin{cases}0, & E=\varnothing \\ 1, & E \neq \varnothing\end{cases}
$$

(see Exercise 1.2.13, part 3, in the lecture notes.) Then $\mu(X)=1<\infty$ but $\mu(\{x\})=1>0$ for every $x \in X$. However only the sets \varnothing and X are measurable.

Exercise 2.2. (Upper and lower semicontinuity of measures.)
Let \mathcal{E} be a σ-algebra on a set X and $\mu: \mathcal{E} \rightarrow[0, \infty]$ a σ-additive function on \mathcal{E}. For a sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{E}$,
(a) show that

$$
\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Solution: Recall that $\liminf _{n \rightarrow \infty} A_{n}$ is the increasing union $\bigcup_{n \geq 1} \bigcap_{m \geq n} A_{m}$. Therefore it holds that

$$
\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\mu\left(\bigcup_{n \geq 1} \bigcap_{m \geq n} A_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcap_{m \geq n} A_{m}\right)
$$

On the other hand, since $\bigcap_{m \geq n} A_{m} \subseteq A_{n}$, it holds that $\mu\left(\bigcap_{m \geq n} A_{m}\right) \leq \mu\left(A_{n}\right)$, thus passing to the lim inf we get

$$
\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcap_{m \geq n} A_{m}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

(b) show that also

$$
\limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)
$$

holds provided that $\mu(X)<\infty$.
Solution: Similarly, $\lim \sup _{n \rightarrow \infty} A_{n}$ is the decreasing intersection $\bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m}$. Assuming that $\mu(X)<\infty$, it holds that

$$
\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\mu\left(\bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{m \geq n} A_{m}\right)
$$

Analogously, since $\bigcup_{m \geq n} A_{m} \supseteq A_{n}$, we see that $\mu\left(\bigcup_{m \geq n} A_{m}\right) \geq \mu\left(A_{n}\right)$, thus we can take the lim sup on both sides and conclude

$$
\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{m \geq n} A_{m}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Exercise 2.3.

Let \mathcal{E} be a σ-algebra on a set X and $\mu: \mathcal{E} \rightarrow[0, \infty]$ a σ-additive function on \mathcal{E}. Which of the following are true for an arbitrary sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{E}$?
(a) Whenever $B \subseteq \bigcup_{n=1}^{\infty} A_{n}$,

$$
\mu(B) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

(b)

$$
\limsup _{n \rightarrow \infty} A_{n}^{c}=\left(\liminf _{n \rightarrow \infty} A_{n}\right)^{c}
$$

(c)

$$
\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

(d)

$$
\limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)
$$

Exercise 2.4.

Let $\mu: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty]$ be a measure with the following property: there is a real number $s>n$ such that for every $x \in \mathbb{R}^{n}$ and $r>0$,

$$
\mu(B(x, r)) \leq r^{s} .
$$

Show that $\mu \equiv 0$. Here $B(x, r)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}$ denotes the open ball with center x and radius r in \mathbb{R}^{n}.

Solution: The key idea is to use cubes instead of squares. Given a cube $Q=\left[a_{1}, a_{1}+\ell\right] \times \cdots \times$ $\left[a_{n}, a_{n}+\ell\right] \subset \mathbb{R}^{n}$, it is easy to see that it is contained in the ball $B(x, r)$ where $x=\left(a_{1}+\ell / 2, \ldots, a_{n}+\right.$ $\ell / 2)$ and r is any number bigger than $\sqrt{n} \ell / 2$. Therefore, by the monotonicity property of μ, our assumption implies that

$$
\mu(Q) \leq \mu(B(x, r)) \leq\left(\frac{\sqrt{n} \ell}{2}\right)^{s}=C \ell^{s}
$$

where C is just a constant that depends on n and s.
Now given any cube $Q=\left[a_{1}, a_{1}+\ell\right] \times \cdots \times\left[a_{n}, a_{n}+\ell\right]$ and any number k, decompose Q into k^{n} cubes of sidelength ℓ / k in the obvious way. That is, the new cubes will be indexed by n integers $i_{1}, \ldots, i_{n} \in\{0, \ldots, k-1\}$ and

$$
Q_{i_{1}, \ldots, i_{n}}=\left[a_{1}+i_{1} \ell / k, a_{1}+\left(i_{1}+1\right) \ell / k\right] \times \cdots \times\left[a_{n}+i_{n} \ell / k, a_{n}+\left(i_{n}+1\right) \ell / k\right] .
$$

Hence by the subadditivity of the measure,

$$
\mu(Q) \leq \sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{0, \ldots, k-1\}^{n}} \mu\left(Q_{i_{1}, \ldots, i_{n}}\right) \leq \sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{0, \ldots, k-1\}^{n}} C \ell^{s}=k^{n}\left(\frac{\ell}{k}\right)^{s}=k^{n-s} \ell^{s} .
$$

Letting $k \rightarrow \infty$ the right hand side tends to zero because $s>n$. Hence any cube has measure zero, and since \mathbb{R}^{n} is a union of cubes, $\mu \equiv 0$.

