Exercise 3.1.

Denote by λ the Lebesgue measure on \mathbb{R} . Let $E \subset [0,1]$ be a Lebesgue measurable set of strictly positive measure, i.e. $\lambda(E) > 0$. Show that for any $0 \leq \delta \leq \lambda(E)$, there exists a measurable subset of E having measure exactly δ .

Hint: Consider the function $t \in [0, 1] \mapsto \lambda([0, t] \cap E)$.

Solution: Consider the following function $f : [0, 1] \to \mathbb{R}$:

$$f(t) = \lambda([0, t] \cap E), \ t \in [0, 1].$$

Notice that f(0) = 0 as well as $f(1) = \lambda(E)$. We want to show that f is continuous. Therefore, take $0 \le s < t \le 1$. Due to the additivity on the disjoint subsets $[0, s] \cap E$ and $(s, t] \cap E$, it holds:

$$f(t) = \lambda([0,t] \cap E) = \lambda([0,s] \cap E) + \lambda((s,t] \cap E) \le f(s) + t - s$$

where the monotonicity of λ was used in the last inequality. Consequently, we conclude

$$|f(t) - f(s)| \le |t - s|,$$

which implies continuity.

The Intermediate Value Theorem states that for any δ between 0 and $\lambda(E)$, there exists a point x such that $f(x) = \delta$. As a result, the set $[0, x] \cap E$ (measurable as an intersection of measurable subsets) satisfies the desired property:

$$\lambda([0,x] \cap E) = \delta.$$

Exercise 3.2. Let $\mu : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ be the function

$$\mu(A) := \sqrt{\mathcal{L}^1(A)}$$

for $A \subseteq \mathbb{R}$, where \mathcal{L}^1 denotes the Lebesgue measure.

(a) Show that μ is a measure.

Solution: Clearly $\mu(\emptyset) = 0$. Let $A \subseteq \bigcup_{k=1}^{\infty} A_k$. Then, by the subadditivity of \mathcal{L}^1 ,

$$\mathcal{L}^1(A) \le \sum_{k=1}^{\infty} \mathcal{L}^1(A_k).$$

Since for every $m \in \mathbb{N}$ we have

$$\sum_{k=1}^{m} \mathcal{L}^{1}(A_{k}) \leq \sum_{k=1}^{m} \mathcal{L}^{1}(A_{k}) + \sum_{1 \leq j < k \leq m} 2\mathcal{L}^{1}(A_{j})^{1/2} \mathcal{L}^{1}(A_{k})^{1/2} = \left(\sum_{k=1}^{m} \mathcal{L}^{1}(A_{k})^{1/2}\right)^{2} \leq \left(\sum_{k=1}^{\infty} \mathcal{L}^{1}(A_{k})^{1/2}\right)^{2},$$

1 / 5

passing to the limit we obtain that

$$\mathcal{L}^{1}(A) \leq \sum_{k=1}^{\infty} \mathcal{L}^{1}(A_{k}) \leq \left(\sum_{k=1}^{\infty} \mathcal{L}^{1}(A_{k})^{1/2}\right)^{2},$$

which is what we wanted to show.

(b) \bigstar What is the σ -algebra of μ -measurable sets?

Solution: Let $A \subset \mathbb{R}$ be such that $\mathcal{L}^1(A) > 0$ and $\mathcal{L}^1(\mathbb{R} \setminus A) > 0$. We claim that A is not μ measurable. Indeed, by the previous exercise we can choose sets $B \subseteq A$ and $C \subseteq \mathbb{R} \setminus A$ such that $0 < \mathcal{L}^1(B), \mathcal{L}^1(C) < \infty$. Then testing measurability against $E := B \cup C$ we find

$$\mu(E) = \sqrt{\mathcal{L}^1(E)} \le \sqrt{\mathcal{L}^1(B) + \mathcal{L}^1(C)} < \sqrt{\mathcal{L}^1(B)} + \sqrt{\mathcal{L}^1(C)} = \mu(E \cap A) + \mu(E \setminus A) < \infty$$

where we have used that $E \cap A = B$ and $E \setminus A = C$, and that the inequality $\sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$ is strict whenever x, y are positive finite real numbers.

On the other hand, every set A with $\mathcal{L}^1(A) = 0$ or $\mathcal{L}^1(\mathbb{R} \setminus A) = 0$ has zero μ -measure (or its complement does) so it is automatically μ -measurable. Thus the σ -algebra of μ -measurable sets consists precisely of the Lebesgue-null sets and their complements.

Exercise 3.3.

Recall that the system of elementary sets is defined as

 $\mathcal{A} := \{ A \subset \mathbb{R}^n \mid A \text{ is the union of finitely many disjoint intervals} \}.$

(a) Prove that \mathcal{A} is an algebra. To simplify the notation you may assume that n = 1.

Solution: To prove that the collection of elementary sets \mathcal{A} is an algebra, we need to show that $\mathbb{R}^n \in \mathcal{A}$ as well as the closedness of \mathcal{A} with respect to taking complements and finite unions.

It is easy to see that \mathbb{R}^n is an interval (see definition in Lecture Notes, $a, b = \pm \infty$ is allowed). Therefore, it belongs to \mathcal{A} . Let now $A = \bigcup_{k=1}^m A_k$ where A_k are disjoint intervals. The complements of the A_k can be expressed as:

$$A_k^c = \bigcup_{i=1}^{p(n)} B_{k,i}$$

where p(n) depends on the dimension of \mathbb{R}^n and determines how many pieces are needed to express the complement as a union of intervals. As a result, A_k^c is again in \mathcal{A} . Now, using de Morgan, we see:

$$A^{c} = \left(\bigcup_{k=1}^{m} A_{k}\right)^{c} = \bigcap_{k=1}^{m} A_{k}^{c} ,$$

However, it is obvious (since the intersection of two intervals is another interval), that the intersection of two sets $A, B \in \mathcal{A}$ lies again in \mathcal{A} . Therefore, we have shown $A^c \in \mathcal{A}$.

Finally, let $A_k = \bigcup_{l=1}^{n_k} A_{kl} \in \mathcal{A}$ where A_{kl} are pairwise disjoint intervals for $k = 1, \ldots, m$ and $l = 1, \ldots, n_k$. In this case, $\bigcup_{k=1}^{m} A_k = \bigcup_{k=1}^{m} \bigcup_{l=1}^{n_k} A_{kl}$ is a finite union of intervals. In addition, they

can be chosen to be disjoint. To see this, let us consider the case m = 2, the general case follows by repeated application of the case m = 2. For all $l \in \{1, ..., n_2\}$, we define:

$$\tilde{A}_{2l} := A_{2l} \setminus \bigcup_{j=1}^{n_1} A_{1j} = A_{2l} \cap \bigcap_{j=1}^{n_1} A_{1j}^c.$$

As we argued before, A_{1j}^c is again an elementary subset and the finite intersection of elementary subsets is again elementary (consider their decomposition into disjoint cubes to see this). Therefore, \tilde{A}_{2l} is elementary. Moreover, observe that all \tilde{A}_{2l} are pairwise disjoint with each other and each of the A_{1j} . Therefore, using their decomposition into disjoint cubes, we can deduce that:

$$A_1 \cup A_2 \in \mathcal{A}.$$

Consequently, we see $\bigcup_{k=1}^{m} A_k \in \mathcal{A}$. This yields that \mathcal{A} is an algebra. \Box A more direct proof can be given as follows: again, we are given a finite collection of elementary

A more direct proof can be given as follows: again, we are given a finite collection of elementary sets A_1, \ldots, A_m . For each $1 \le k \le n$, let

$$-\infty =: a_0^k < a_1^k < a_2^k < \ldots < a_{q_k-1}^k < a_{q_k}^k := +\infty$$

be the finite collection of numbers which appear as one of the endpoints of the k-th factor of one of the intervals that constitute one of the A_j .

Namely, for each $k \in \{1, \ldots, n\}$, let S^k be the union of the sets of endpoints of all the intervals I_k that are the k-th factor of one of the $I \subset A_j$, together with $\pm \infty$. Since S^k is finite, we can write it as $\{a_0^k, \ldots, a_{q_k}^k\}$, where the elements are ordered increasingly and $a_0^k = -\infty, a_{q_k}^k = +\infty$. Consider then the finite collection of intervals

$$\mathcal{J} = \{ J_1 \times \dots \times J_n \mid \text{for each } k, J_k = \{a_i^k\} \text{ with } 0 < i < q_k \text{ or } J_k = (a_i^k, a_{i+1}^k) \text{ with } 0 \le i < q_k \}.$$

It is clear that the intervals in \mathcal{J} partition \mathbb{R}^n , and that each A_j is a union of intervals in \mathcal{J} . Therefore the union $A_1 \cup \cdots \cup A_m$ can be written as the (disjoint) union of those $J \in \mathcal{J}$ which are contained in some A_j , and in particular is a disjoint union of intervals.

Note also that this also shows at once that \mathcal{A} is closed under complements: defining \mathcal{J} as above only for the elementary set A, we see that A is the union of some intervals from \mathcal{J} , therefore A^c is the union of the remaining ones.

(b) \bigstar Show that the volume function vol introduced in the lecture¹ for elementary sets is a pre-measure.

Remark: For $I = I_1 \times \ldots \times I_n$ an interval in \mathbb{R}^n , its volume is defined by

$$\operatorname{vol}(I) = \prod_{k=1}^{n} \operatorname{vol}(I_k),$$

where for an interval $I_k \subseteq \mathbb{R}$, $\operatorname{vol}(I_k)$ is the length of I_k .

¹Definition 1.3.1 in the Lecture Notes.

Solution: Let $\{A_k\}_{k\in\mathbb{N}}$ be a countable, pairwise disjoint family of elementary sets and assume that $A = \bigcup_{k=1}^{\infty} A_k$ is another elementary set. We want to show:

$$\operatorname{vol}(A) = \sum_{k=1}^{\infty} \operatorname{vol}(A_k).$$

First of all, by considering instead of A_k its building blocks, we can assume that each A_k is an interval. The \geq inequality is easy to see because

$$\operatorname{vol}(A) \ge \sum_{k=1}^{m} \operatorname{vol}(A_k)$$

holds for each m due to the monotonicity of the volume.

For the opposite inequality, let $\varepsilon > 0$ and take a compact elementary set $B \subset A$ such that $\operatorname{vol}(A) \leq \operatorname{vol}(B) + \varepsilon$ if $\operatorname{vol}(A) < \infty$ or such that $\operatorname{vol}(B) \geq \varepsilon^{-1}$ if $\operatorname{vol}(A) = \infty$. Then take open intervals U_k containing $A_k \cap B$ with $\operatorname{vol}(U_k) \leq \operatorname{vol}(A_k \cap B) + 2^{-k}\varepsilon$. All of these sets are easy to construct by slightly changing the endpoints of the intervals.

Since B is a compact set covered by the open sets U_k , we can extract a finite cover U_{k_1}, \ldots, U_{k_m} of B and therefore

$$\operatorname{vol}(B) \le \sum_{i=1}^{m} \operatorname{vol}(U_{k_i}) \le \sum_{k=1}^{\infty} \operatorname{vol}(U_k) \le \sum_{k=1}^{\infty} \left(\operatorname{vol}(A_k \cap B) + 2^{-k} \varepsilon \right) \le \sum_{k=1}^{\infty} \operatorname{vol}(A_k) + \varepsilon.$$

Letting now $\varepsilon \to 0$, the left hand side converges to vol(A) and the right hand side converges to the sum $\sum_{k=1}^{\infty} \operatorname{vol}(A_k)$, thus proving the \leq .

Exercise 3.4.

(a) Let X be any set with more than one element and consider the measure $\mu : \mathcal{P}(X) \to [0, +\infty]$ defined by:

$$\mu(A) = \begin{cases} 1 & \text{if } A \neq \emptyset \\ 0 & \text{else} \end{cases}$$

Give an example of a non- μ -measurable subset.

Solution: We prove that A is μ -measurable if and only if $A \in \{\emptyset, X\}$. Assume that $A \neq \emptyset, X$. In this case, there exist $x, y \in X$ such that $x \in A$ und $y \in A^c$. Consequently, we deduce:

$$\mu(X) = 1 \neq 2 = \mu(X \setminus A) + \mu(X \cap A).$$

As a result, any subset $A \neq \emptyset$, X is not μ -measurable. Conversely, it is immediate to check that \emptyset and X are μ -measurable.

(b) Define \mathcal{A} to be the algebra in \mathbb{R} generated by the half-closed intervals of the form [a, b] for every $-\infty \leq a < b \leq \infty$. Note that any element in \mathcal{A} can be expressed as the disjoint

union of finitely many intervals of the type described before. Moreover, we define:

$$\lambda : \mathcal{A} \to [0, +\infty], \quad \lambda(A) = \begin{cases} +\infty & \text{if } A \neq \emptyset \\ 0 & \text{else} \end{cases}$$

Check that λ is a pre-measure and find two distinct Carathéodory-Hahn extensions of λ , i.e. two measures on $\mathcal{P}(\mathbb{R})$ which coincide with λ on \mathcal{A} . Why does this not yield a contradiction to the uniqueness statement Theorem 1.2.21 of the Lecture Notes?

Solution: Checking that λ is a pre-measure is trivial. Now consider the counting measure μ_1 : $\mathcal{P}(\mathbb{R}) \to [0, \infty]$, i.e.

$$\mu_1(A) = \begin{cases} \#A & \text{if } A \text{ is finite} \\ +\infty & \text{otherwise,} \end{cases}$$

and the measure $\mu_2 : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ given by

$$\mu_2(A) = \begin{cases} +\infty & \text{if } A \text{ has uncountably many elements} \\ 0 & \text{otherwise.} \end{cases}$$

Observe that μ_1 and μ_2 are distinct extensions of λ that do not agree on the σ -algebra generated by \mathcal{A} , which is the Borel σ -algebra of \mathbb{R} (see Example 1.1.9 of the Lecture Notes). This does not contradict Theorem 1.2.21 in the Lecture Notes due to the simple observation that λ is not σ -finite.

Exercise 3.5.

Let μ be a measure on \mathbb{R}^n and $A, B_1, B_2, \ldots \subset \mathbb{R}^n$ be such that $A \subseteq \limsup_{k \to \infty} B_k$ and $\sum_{k=1}^{\infty} \mu(B_k) < \infty$. Which of the following statements are true?

(a) $\mu(A) > 0.$ **X**

(b) $\mu(A) = 0.$

- (c) Every point of A belongs to infinitely many of the B_k .
- (d) Every point of A belongs to all except possibly finitely many of the B_k .