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Exercise 3.1.
Denote by λ the Lebesgue measure on R. Let E ⊂ [0, 1] be a Lebesgue measurable set of
strictly positive measure, i.e. λ(E) > 0. Show that for any 0 ≤ δ ≤ λ(E), there exists a
measurable subset of E having measure exactly δ.

Hint: Consider the function t ∈ [0, 1] 7→ λ([0, t] ∩ E).

Solution: Consider the following function f : [0, 1] → R:

f(t) = λ([0, t] ∩ E), t ∈ [0, 1].

Notice that f(0) = 0 as well as f(1) = λ(E). We want to show that f is continuous. Therefore,
take 0 ≤ s < t ≤ 1. Due to the additivity on the disjoint subsets [0, s] ∩ E and (s, t] ∩ E, it holds:

f(t) = λ([0, t] ∩ E) = λ([0, s] ∩ E) + λ((s, t] ∩ E) ≤ f(s) + t− s

where the monotonicity of λ was used in the last inequality. Consequently, we conclude

|f(t)− f(s)| ≤ |t− s|,

which implies continuity.

The Intermediate Value Theorem states that for any δ between 0 and λ(E), there exists a point
x such that f(x) = δ. As a result, the set [0, x] ∩ E (measurable as an intersection of measurable
subsets) satisfies the desired property:

λ([0, x] ∩ E) = δ.

Exercise 3.2.
Let µ : P(R) → [0,∞] be the function

µ(A) :=
√

L1(A)

for A ⊆ R, where L1 denotes the Lebesgue measure.

(a) Show that µ is a measure.

Solution: Clearly µ(∅) = 0. Let A ⊆
⋃∞

k=1Ak. Then, by the subadditivity of L1,

L1(A) ≤
∞∑
k=1

L1(Ak).

Since for every m ∈ N we have

m∑
k=1

L1(Ak) ≤
m∑
k=1

L1(Ak)+
∑

1≤j<k≤m

2L1(Aj)
1/2L1(Ak)

1/2 =

(
m∑
k=1

L1(Ak)
1/2

)2

≤

( ∞∑
k=1

L1(Ak)
1/2

)2

,
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ETH Zürich
HS 2023

passing to the limit we obtain that

L1(A) ≤
∞∑
k=1

L1(Ak) ≤

( ∞∑
k=1

L1(Ak)
1/2

)2

,

which is what we wanted to show.

(b) ⋆ What is the σ-algebra of µ-measurable sets?

Solution: Let A ⊂ R be such that L1(A) > 0 and L1(R \ A) > 0. We claim that A is not µ-
measurable. Indeed, by the previous exercise we can choose sets B ⊆ A and C ⊆ R \ A such that
0 < L1(B),L1(C) < ∞. Then testing measurability against E := B ∪ C we find

µ(E) =
√
L1(E) ≤

√
L1(B) + L1(C) <

√
L1(B) +

√
L1(C) = µ(E ∩A) + µ(E \A) < ∞

where we have used that E ∩A = B and E \A = C, and that the inequality
√
x+ y ≤

√
x+

√
y is

strict whenever x, y are positive finite real numbers.

On the other hand, every set A with L1(A) = 0 or L1(R \ A) = 0 has zero µ-measure (or its
complement does) so it is automatically µ-measurable. Thus the σ-algebra of µ-measurable sets
consists precisely of the Lebesgue-null sets and their complements.

Exercise 3.3.
Recall that the system of elementary sets is defined as

A := {A ⊂ Rn | A is the union of finitely many disjoint intervals}.

(a) Prove that A is an algebra. To simplify the notation you may assume that n = 1.

Solution: To prove that the collection of elementary sets A is an algebra, we need to show that
Rn ∈ A as well as the closedness of A with respect to taking complements and finite unions.

It is easy to see that Rn is an interval (see definition in Lecture Notes, a, b = ±∞ is allowed).
Therefore, it belongs to A. Let now A =

⋃m
k=1Ak where Ak are disjoint intervals. The complements

of the Ak can be expressed as:

Ac
k =

p(n)⋃
i=1

Bk,i

where p(n) depends on the dimension of Rn and determines how many pieces are needed to express
the complement as a union of intervals. As a result, Ac

k is again in A. Now, using de Morgan, we
see:

Ac =

(
m⋃
k=1

Ak

)c

=
m⋂
k=1

Ac
k ,

However, it is obvious (since the intersection of two intervals is another interval), that the intersec-
tion of two sets A,B ∈ A lies again in A. Therefore, we have shown Ac ∈ A.

Finally, let Ak =
⋃nk

l=1Akl ∈ A where Akl are pairwise disjoint intervals for k = 1, . . . ,m and
l = 1, . . . , nk. In this case,

⋃m
k=1Ak =

⋃m
k=1

⋃nk
l=1Akl is a finite union of intervals. In addition, they
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can be chosen to be disjoint. To see this, let us consider the case m = 2, the general case follows
by repeated application of the case m = 2. For all l ∈ {1, . . . , n2}, we define:

Ã2l := A2l \
n1⋃
j=1

A1j = A2l ∩
n1⋂
j=1

Ac
1j .

As we argued before, Ac
1j is again an elementary subset and the finite intersection of elementary

subsets is again elementary (consider their decomposition into disjoint cubes to see this). Therefore,
Ã2l is elementary. Moreover, observe that all Ã2l are pairwise disjoint with each other and each of
the A1j . Therefore, using their decomposition into disjoint cubes, we can deduce that:

A1 ∪A2 ∈ A.

Consequently, we see
⋃m

k=1Ak ∈ A. This yields that A is an algebra.

A more direct proof can be given as follows: again, we are given a finite collection of elementary
sets A1, . . . , Am. For each 1 ≤ k ≤ n, let

−∞ =: ak0 < ak1 < ak2 < . . . < akqk−1 < akqk := +∞

be the finite collection of numbers which appear as one of the endpoints of the k-th factor of one
of the intervals that constitute one of the Aj .

Namely, for each k ∈ {1, . . . , n}, let Sk be the union of the sets of endpoints of all the intervals Ik
that are the k-th factor of one of the I ⊂ Aj , together with ±∞. Since Sk is finite, we can write it
as {ak0, . . . , akqk}, where the elements are ordered increasingly and ak0 = −∞, akqk = +∞.

Consider then the finite collection of intervals

J =
{
J1 × · · · × Jn

∣∣ for each k, Jk = {aki } with 0 < i < qk or Jk = (aki , a
k
i+1) with 0 ≤ i < qk

}
.

It is clear that the intervals in J partition Rn, and that each Aj is a union of intervals in J .
Therefore the union A1 ∪ · · · ∪Am can be written as the (disjoint) union of those J ∈ J which are
contained in some Aj , and in particular is a disjoint union of intervals.

Note also that this also shows at once that A is closed under complements: defining J as above
only for the elementary set A, we see that A is the union of some intervals from J , therefore Ac is
the union of the remaining ones.

(b) ⋆ Show that the volume function vol introduced in the lecture1 for elementary sets is a
pre-measure.

Remark : For I = I1 × . . .× In an interval in Rn, its volume is defined by

vol(I) =
n∏

k=1

vol(Ik),

where for an interval Ik ⊆ R, vol(Ik) is the length of Ik.

1Definition 1.3.1 in the Lecture Notes.
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Solution: Let {Ak}k∈N be a countable, pairwise disjoint family of elementary sets and assume that
A =

⋃∞
k=1Ak is another elementary set. We want to show:

vol(A) =
∞∑
k=1

vol(Ak).

First of all, by considering instead of Ak its building blocks, we can assume that each Ak is an
interval. The ≥ inequality is easy to see because

vol(A) ≥
m∑
k=1

vol(Ak)

holds for each m due to the monotonicity of the volume.

For the opposite inequality, let ε > 0 and take a compact elementary set B ⊂ A such that vol(A) ≤
vol(B) + ε if vol(A) < ∞ or such that vol(B) ≥ ε−1 if vol(A) = ∞. Then take open intervals Uk

containing Ak ∩ B with vol(Uk) ≤ vol(Ak ∩ B) + 2−kε. All of these sets are easy to construct by
slightly changing the endpoints of the intervals.

Since B is a compact set covered by the open sets Uk, we can extract a finite cover Uk1 , . . . , Ukm of
B and therefore

vol(B) ≤
m∑
i=1

vol(Uki) ≤
∞∑
k=1

vol(Uk) ≤
∞∑
k=1

(
vol(Ak ∩B) + 2−kε

)
≤

∞∑
k=1

vol(Ak) + ε.

Letting now ε → 0, the left hand side converges to vol(A) and the right hand side converges to the
sum

∑∞
k=1 vol(Ak), thus proving the ≤.

Exercise 3.4.

(a) Let X be any set with more than one element and consider the measure µ : P(X) →
[0,+∞] defined by:

µ(A) =

{
1 if A ̸= ∅
0 else

.

Give an example of a non-µ-measurable subset.

Solution: We prove that A is µ-measurable if and only if A ∈ {∅, X}. Assume that A ̸= ∅, X. In
this case, there exist x, y ∈ X such that x ∈ A und y ∈ Ac. Consequently, we deduce:

µ(X) = 1 ̸= 2 = µ(X \A) + µ(X ∩A).

As a result, any subset A ̸= ∅, X is not µ-measurable. Conversely, it is immediate to check that ∅
and X are µ-measurable.

(b) Define A to be the algebra in R generated by the half-closed intervals of the form [a, b[
for every −∞ ≤ a < b ≤ ∞. Note that any element in A can be expressed as the disjoint
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ETH Zürich
HS 2023

union of finitely many intervals of the type described before. Moreover, we define:

λ : A → [0,+∞], λ(A) =

{
+∞ if A ̸= ∅
0 else

Check that λ is a pre-measure and find two distinct Carathéodory-Hahn extensions of λ, i.e.
two measures on P(R) which coincide with λ on A. Why does this not yield a contradiction
to the uniqueness statement Theorem 1.2.21 of the Lecture Notes?

Solution: Checking that λ is a pre-measure is trivial. Now consider the counting measure µ1 :
P(R) → [0,∞], i.e.

µ1(A) =

{
#A if A is finite

+∞ otherwise,

and the measure µ2 : P(R) → [0,∞] given by

µ2(A) =

{
+∞ if A has uncountably many elements

0 otherwise.

Observe that µ1 and µ2 are distinct extensions of λ that do not agree on the σ-algebra generated
by A, which is the Borel σ-algebra of R (see Example 1.1.9 of the Lecture Notes). This does
not contradict Theorem 1.2.21 in the Lecture Notes due to the simple observation that λ is not
σ-finite.

Exercise 3.5. ♣
Let µ be a measure on Rn and A,B1, B2, . . . ⊂ Rn be such that A ⊆ lim supk→∞Bk and∑∞

k=1 µ(Bk) < ∞. Which of the following statements are true?

(a) µ(A) > 0. %

(b) µ(A) = 0. !

(c) Every point of A belongs to infinitely many of the Bk. !

(d) Every point of A belongs to all except possibly finitely many of the Bk. %
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