Exercise 4.1.

Prove that the Lebesgue measure is invariant under translations, reflections and rotations, i.e. under all motions of the form

$$\Phi: \mathbb{R}^n \to \mathbb{R}^n, \quad \Phi(x) = x_0 + Rx,$$

for $x_0 \in \mathbb{R}^n$ and $R \in O(n)$.

Hint: You may use the invariance of the Jordan measure, see Satz 9.3.2 in Struwe's lecture notes.

Solution: Let $I \subset \mathbb{R}^n$ be an interval. In this case, $\Phi(I)$ is a Jordan measurable set whose volume actually agrees with the volume of I. Due to the invariance of the Jordan measure μ with respect to these motions (see Satz 9.3.2 in Struwe's lecture notes), it holds that $\mathcal{L}^n(\Phi(I)) = \mu(\Phi(I)) = \mu(I) = \mathcal{L}^n(I)$.

Let now G be an open subset of \mathbb{R}^n and $G = \bigcup_{k=1}^{\infty} I_k$ for some disjoint collection of intervals I_k (see Lemma 1.3.4 in the Lecture Notes). Then $\Phi(G)$ is again open (because Φ^{-1} is continuous) and $\Phi(G) = \bigcup_{k=1}^{\infty} \Phi(I_k)$ where $\Phi(I_k)$ are disjoint \mathcal{L}^n -measurable subsets. As above, we observe

$$\mathcal{L}^n(\Phi(G)) = \sum_{k=1}^{\infty} \mathcal{L}^n(\Phi(I_k)) = \sum_{k=1}^{\infty} \mathcal{L}^n(I_k) = \mathcal{L}^n(G).$$

For arbitrary subsets A, G of \mathbb{R}^n , it holds

$$A \subset G, G$$
 open \iff $\Phi(A) \subset \Phi(G), \Phi(G)$ open

and consequently

$$\mathcal{L}^n(\Phi(A)) = \inf_{A \subset G, G \text{ open}} \mathcal{L}^n(\Phi(G)) = \inf_{A \subset G, G \text{ open}} \mathcal{L}^n(G) = \mathcal{L}^n(A).$$

Exercise 4.2.

Which of the following statements are correct?

- (a) Every countable subset of \mathbb{R} is a Borel set. \checkmark
- (b) Every countable subset of \mathbb{R} is Jordan-measurable. \boldsymbol{X}
- (c) Every countable subset of $\mathbb R$ has Lebesgue measure zero. \checkmark
- (d) Every countable subset of $\mathbb R$ has inner Jordan measure zero. \checkmark
- (e) Every countable subset of $\mathbb R$ has outer Jordan measure zero \boldsymbol{X}

Exercise 4.3.

(a) Let $A \subset \mathbb{R}$ be a subset with Lebesgue measure $\mathcal{L}^1(A) > 0$. Show that there exists a subset $B \subset A$ which is **not** \mathcal{L}^1 -measurable.

Solution: By the translation invariance of \mathcal{L}^1 and possibly taking a subset of A, we may assume $A \subset (0,1)$. Now define $B_j := A \cap P_j$, where P_j is defined as in (1.5.4) of the Lecture Notes. It was shown that if B_j is \mathcal{L}^1 -measurable, it must have measure 0 due to $B_j \subset P_j$. Therefore, if all B_j are measurable, we obtain due to their pairwise disjointness and $\bigcup_j B_j = A$:

$$0 < \mathcal{L}^{1}(A) = \sum_{j=1}^{\infty} \mathcal{L}^{1}(B_{j}) = 0,$$

which contradicts our assumptions.

(b) Find an example of a countable, pairwise disjoint collection $\{E_k\}_k$ of subsets in \mathbb{R} , such that

$$\mathcal{L}^1\Big(\bigcup_{k=1}^{\infty} E_k\Big) < \sum_{k=1}^{\infty} \mathcal{L}^1(E_k).$$

Solution: Recall the definition of P_j from the lecture (equation (1.5.4) in the Lecture Notes). This collection yields precisely the desired example.

Exercise 4.4. *

Show that the open ball $B(x,r) := \{y \in \mathbb{R}^n \mid |y-x| < r\}$ and the closed ball $\overline{B(x,r)} := \{y \in \mathbb{R}^n \mid |y-x| \le r\}$ in \mathbb{R}^n are Jordan measurable with Jordan measure $c_n r^n$, for some constant $c_n > 0$ depending only on n.

Solution: We first show how the Jordan measure behaves under translations and dilations.

Claim 1: If $A \subset \mathbb{R}^n$ bounded is Jordan measurable, then A + x is Jordan measurable for all $x \in \mathbb{R}^n$ and $\mu(A + x) = \mu(A)$ (where μ is the Jordan measure, see Section 1.4 in the Lecture Notes).

Proof. If $E \subset A$ is an elementary set, then E + x is an elementary set contained in A + x and vol(E + x) = vol(E). This implies easily that $\underline{\mu}(A + x) = \underline{\mu}(A)$. Similarly one obtains $\overline{\mu}(A + x) = \overline{\mu}(A)$, which proves the claim above.

Claim 2: If $A \subset \mathbb{R}^n$ bounded is Jordan measurable, then $tA = \{tx \mid x \in A\}$ is Jordan measurable for all $0 < t < \infty$ with $\mu(tA) = t^n \mu(A)$.

Proof. Consider an elementary subset $E \subset A$, then tE is an elementary subset contained in tA with $vol(tE) = t^n vol(E)$. Similarly we can argue for elementary sets containing A, proving the claim.

Hence, it is sufficient to prove the result for $x = 0 \in \mathbb{R}^n$ and r = 1. In particular we will show that $\underline{\mu}(B(0,1)) = \overline{\mu}(\overline{B(0,1)})$, which proves directly that B(0,1) and $\overline{B(0,1)}$ are Jordan measurable with the same measure $c_n := \mu(B(0,1)) = \mu(\overline{B(0,1)})$.

Consider the following set of intervals with side length 2^{-k}

$$\mathcal{I}_k = \{[a,b) \subset \mathbb{R}^n \mid a = 2^{-k}(a_1,\ldots,a_n), \ b = 2^{-k}(a_1+1,\ldots,a_n+1), \ a_i \in \mathbb{Z}\},\$$

namely the standard partition of \mathbb{R}^n with intervals of side length 2^{-k} . Now let $\mathcal{I}'_k = \{I \in \mathcal{I}_k \mid I \subset B(0,1)\}$ be the set of intervals in \mathcal{I}_k contained in B(0,1) and define $A_k := \bigcup_{I \in \mathcal{I}'_k} I \subset B(0,1)$.

Let k be large enough that $2^{-k}\sqrt{n} < 1$ and set $r_k := 1 - 2^{-k}\sqrt{n} > 0$. Given a point $x = (x_1, \ldots, x_n) \in \overline{B(0, r_k)}$, consider the open cube $Q = (x_1 - 2^{-k}, x_1 + 2^{-k}) \times \cdots \times (x_n - 2^{-k}, x_n + 2^{-k})$, which is contained inside the ball $B(x, 2^{-k}\sqrt{n}) \subseteq B(0, 1)$.

For each i, let $a_i = \lfloor 2^k x_i \rfloor \in \mathbb{Z}$ be the integer part of $2^k x_i$, so that $2^{-k} a_i \leq x_i < 2^{-k} (a_i + 1)$. Then it holds that $x_i - 2^{-k} < 2^{-k} a_i$ and $2^{-k} (a_i + 1) \leq x_i + 2^{-k}$, so

$$x_i \in [2^{-k}a_i, 2^{-k}(a_i+1)) \subset (x_i - 2^{-k}, x_i + 2^{-k}).$$

Thus we have the following inclusions:

$$x \in [2^{-k}a_1, 2^{-k}(a_1+1)) \times \cdots \times [2^{-k}a_n, 2^{-k}(a_n+1)) \subset Q \subset B(0,1).$$

Therefore x is contained in an interval which belongs to \mathcal{I}'_k , thus $x \in A_k$.

This shows that $\overline{B(0,r_k)} \subset A_k$, so $A_k \subset B(0,1) \subset \overline{B(0,1)} \subset r_k^{-1}A_k$. Thus

$$\overline{\mu}(\overline{B(0,1)}) \leq \operatorname{vol}(r_k^{-1}A_k) = r_k^{-n}\operatorname{vol}(A_k) \leq r_k^{-n}\underline{\mu}(B(0,1)).$$

Finally letting $k \to \infty$, since $r_k \to 1$, we get the inequality $\overline{\mu}(\overline{B(0,1)}) \leq \underline{\mu}(B(0,1))$, while the opposite inequality is trivial.

Remark. An alternative proof can be given by considering the n-dimensional closed ball $\overline{B^n(0,1)} \subset \mathbb{R}^n$ as the set of points that lie between the graphs of -f and f, where $f:\overline{B^{n-1}(0,1)} \to \mathbb{R}$ is the function $f(x) = \sqrt{1-|x|^2}$. Since f is continuous and $\overline{B^{n-1}(0,1)}$ is compact, f is uniformly continuous, and the same is true for the extension $\overline{f}:\mathbb{R}^{n-1} \to \mathbb{R}$ of f which is zero outside of the unit ball.

Therefore given $\varepsilon > 0$ we can take k large enough that, for the dyadic decomposition \mathcal{J}_k of \mathbb{R}^{n-1} into intervals of side length 2^{-k} as above, it holds that

$$\sup_{I} \bar{f} - \inf_{J} \bar{f} \le \varepsilon$$

for each interval $J \in \mathcal{J}_k$. Let $\mathcal{J}_k^- \subseteq \mathcal{J}_k^+ \subset \mathcal{J}_k$ be the finite collections of intervals defined by

$$\mathcal{J}_k^- := \{ J \in \mathcal{J}_k \mid J \subseteq B^{n-1}(0,1) \}$$

and

$$\mathcal{J}_k^+ := \{ J \in \mathcal{J}_k \mid J \cap \overline{B^{n-1}(0,1)} \neq \varnothing \}.$$

It is clear that every interval in \mathcal{J}_k^+ is contained in $[-1,1] \times \cdots \times [-1,1]$. We use these collections to define the elementary sets

$$A_k^- = \bigcup_{J \in \mathcal{J}_k^-} J \times (-\inf_J \bar{f}, \inf_J \bar{f}) \subset \mathbb{R}^n$$

and

$$A_k^+ = \bigcup_{J \in \mathcal{J}_k^+} J \times [-\sup_J \bar{f}, \sup_J \bar{f}] \subset \mathbb{R}^n.$$

It is then clear that $A_k^- \subseteq B^n(0,1) \subset \overline{B^n(0,1)} \subseteq A_k^+$ and that

$$\begin{split} \operatorname{vol}(A_k^+) - \operatorname{vol}(A_k^-) &= \sum_{J \in \mathcal{J}_k^+} 2 \sup_J \bar{f} \operatorname{vol}(J) - \sum_{J \in \mathcal{J}_k^-} 2 \inf_J \bar{f} \operatorname{vol}(J) \\ &= \sum_{J \in \mathcal{J}_k^+} 2 \left(\sup_J \bar{f} - \inf_J \bar{f} \right) \operatorname{vol}(J) \leq 2\varepsilon \sum_{J \in \mathcal{J}_k^+} \operatorname{vol}(J) \\ &= 2\varepsilon \operatorname{vol} \left(\bigcup_{J \in \mathcal{J}_k^+} J \right) \leq 2\varepsilon \operatorname{vol} \left([-1, 1]^{n-1} \right) = 2^n \varepsilon. \end{split}$$

Thus $\overline{\mu}(\overline{B(0,1)}) \le \mu(B(0,1)) + 2^n \varepsilon$ for every $\varepsilon > 0$, proving the Jordan measurability of the ball.