Exercise 5.1.

Fix some $0<\beta<1 / 3$ and define $I_{1}=[0,1]$. For every $n \geq 1$, let $I_{n+1} \subset I_{n}$ be the collection of intervals obtained removing from every interval in I_{n} its centered open subinterval of length β^{n}. Then define by $C_{\beta}=\bigcap_{n=1}^{\infty} I_{n}$, the fat Cantor set corresponding to β.
Show that:
(a) C_{β} is Lebesgue measurable with measure $\mathcal{L}^{1}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}$.

Solution: The set I_{n} is Lebesgue measurable, since it consists of 2^{n-1} intervals, and has measure $\mathcal{L}^{1}\left(I_{n}\right)=\mathcal{L}^{1}\left(I_{n-1}\right)-2^{n-2} \beta^{n-1}$ for all $n \geq 2$, with $\mathcal{L}^{1}\left(I_{1}\right)=1$. Hence

$$
\mathcal{L}^{1}\left(I_{n}\right)=1-\sum_{k=1}^{n-1} 2^{k-1} \beta^{k}=1-\frac{1}{2} \sum_{k=1}^{n-1}(2 \beta)^{k}=1-\frac{1}{2}\left(\frac{1-(2 \beta)^{n}}{1-2 \beta}-1\right)=1-\frac{\beta-2^{n-1} \beta^{n}}{1-2 \beta} .
$$

As a result $C_{\beta}=\bigcap_{n=1}^{\infty} I_{n}$ is Lebesgue measurable with measure

$$
\mathcal{L}^{1}\left(C_{\beta}\right)=\lim _{n \rightarrow \infty} \mathcal{L}^{1}\left(I_{n}\right)=1-\frac{\beta}{1-2 \beta} .
$$

(b) C_{β} is not Jordan measurable. Indeed it holds $\underline{\mu}\left(C_{\beta}\right)=0$ and $\bar{\mu}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}>0$.

Solution: First note that C_{β} has empty interior, which follows from the fact that I_{n} consists of 2^{n-1} intervals of length $\left(1-\frac{\beta}{1-2 \beta}\right) 2^{-(n-1)}+\frac{\beta^{n}}{1-2 \beta}$, which converges to 0 as $n \rightarrow \infty$. Therefore $\underline{\mu}\left(C_{\beta}\right)=0$. On the other hand $\bar{\mu}\left(C_{\beta}\right) \geq \mathcal{L}^{1}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}$ and this is actually an equality since I_{n} is an elementary set for all $n \geq 1$ and therefore $\bar{\mu}\left(C_{\beta}\right) \leq \inf _{n \geq 1} \mathcal{L}^{1}\left(I_{n}\right)=1-\frac{\beta}{1-2 \beta}$. Hence $\bar{\mu}\left(C_{\beta}\right)=1-\frac{\beta}{1-2 \beta}$, which is greater than 0 for $0<\beta<1 / 3$. Hence C_{β} is not Jordan measurable.

Exercise 5.2.

The goal of this exercise is to show that the Cantor triadic set C is uncountable. For that, recall quickly the construction of C : Every $x \in[0,1]$ can be expanded in base 3, i.e., can be written as $x=\sum_{i=1}^{\infty} d_{i}(x) 3^{-i}$ for $d_{i}(x) \in\{0,1,2\}$. The set C is then defined as the set of those $x \in[0,1]$ that do not have any digit 1 in their 3 -expansion, i.e.:,

$$
C:=\left\{x \in[0,1] \mid d_{i}(x) \in\{0,2\}, \forall i \in \mathbb{N}\right\}
$$

Now, the Cantor-Lebesgue function F is defined by

$$
F: C \rightarrow[0,1], \quad F\left(\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}\right):=\sum_{i=1}^{\infty} \frac{a_{i}}{2^{i+1}} .
$$

(a) Show that $F(0)=0$ and $F(1)=1$.

Solution: We see $0=\sum_{i=1}^{\infty} 0 \cdot 3^{-i}$ and as a result, $F(0)=\sum_{i=1}^{\infty} 0 \cdot 2^{-(i+1)}=0$. For 1 we have the expansion $1=0.2222 \ldots$, so $1=\sum_{i=1}^{\infty} 2 \cdot 3^{-i}$ and therefore

$$
F(1)=\sum_{i=1}^{\infty} 2 \cdot \frac{1}{2^{i+1}}=\frac{1}{2} \cdot \sum_{i=0}^{\infty} \frac{1}{2^{i}}=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}}=1 .
$$

(b) Show that F is well-defined and continuous on C.

Solution: In general, expansions in the base 3 of an element $x \in[0,1]$ are not unique, see for example $0.1=0.022222 \ldots$. . However, if we restrict ourselves to expansions only using the coefficients 0 and 2 , the expansion becomes unique, which shows that F is well-defined on C. (It could be easily shown that F would even be well-defined on $[0,1]$ by investigating periodic expansions more closely).
We now proceed to show that F is continuous on C. Let $\varepsilon>0$. Take any $x \in C$ and $\left\{x_{n}\right\}_{n=0}^{\infty}$ any sequence in C converging to x. Take $N \in \mathbb{N}$ such that $2^{-N}<\varepsilon$. Because of the convergence of $\left\{x_{n}\right\}_{n=0}^{\infty}$ to x, there is a $M>N$ such that $\left|x_{n}-x\right|<3^{-M}$, for all $n>M$. This implies that x und x_{n} lie in the same interval of C_{n} for all $n>M$, where

$$
C_{n}=\left\{x \in[0,1] \mid d_{i}(x) \in\{0,2\}, \forall i \leq n\right\},
$$

is the n-th approximation of the Cantor set C (see lecture). In particular, this shows that $d_{i}(x)=$ $d_{i}\left(x_{n}\right)$ for any $i \leq M$. Consequently, we see that

$$
\left|F\left(x_{n}\right)-F(x)\right| \leq \sum_{k=M+1}^{\infty} \frac{1}{2^{k}}=\frac{1}{2^{M}}<\frac{1}{2^{N}}<\varepsilon
$$

which implies the continuity of F.
(c) Show that F is surjective.

Solution: Let $y \in[0,1]$ be any element. The expansion of y in the basis 2 is assumed to be $y=\sum_{k=1}^{\infty} b_{k} \cdot 2^{-k}$ with $b_{k} \in\{0,1\}$. Define $a_{k}:=2 b_{k}$ for all $k \geq 1$. In this case, $x=\sum_{k=1}^{\infty} a_{k} \cdot 3^{-k}$ is by definition an element of C (because $a_{k} \in\{0,2\}$) and it holds

$$
F(x)=F\left(\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}\right)=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k+1}}=\sum_{k=1}^{\infty} \frac{b_{k}}{2^{k}}=y .
$$

Therefore, F is surjective.
(d) Conclude that C is uncountable.

Solution: F is a continuous map, which sends C surjectively onto $[0,1]$. As $[0,1]$ is uncountable, the set C has to be uncountable as well.

Exercise 5.3.

Which of the following statements are true?
(a) There is a subset $A \subset \mathbb{R}$ which is not Lebesgue-measurable but such that the set $B:=$ $\{x \in A: x$ is irrational $\}$ is Lebesgue-measurable.
(b) There exist two disjoint sets $A, B \subset \mathbb{R}^{n}$ which are not \mathcal{L}^{n}-measurable but whose union is \mathcal{L}^{n}-measurable.
(c) If the boundary of $\Omega \subset \mathbb{R}^{n}$ has \mathcal{L}^{n}-measure zero, then Ω is \mathcal{L}^{n}-measurable.
(d) Let $A \subset[0,1]$ be a set which is not \mathcal{L}^{1}-measurable. Then the set $B:=\{(x, x): x \in A\} \subset$ \mathbb{R}^{2} is not \mathcal{L}^{2}-measurable.

Exercise 5.4.

In this exercise we want to prove that there is a one-to-one correspondence between the nondecreasing left-continuous ${ }^{1}$ functions F on \mathbb{R} with $F(0)=0$ and the Borel measures on \mathbb{R} that are finite on bounded Borel sets.
(a) Given any nondecreasing left-continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$, show that the LebesgueStieltjes measure Λ_{F} generated by F is the unique Borel measure on \mathbb{R} that is equal to $F(b)-F(a)$ on $[a, b)$. Namely, for every other Borel measure μ on \mathbb{R} such that $\mu([a, b))=$ $F(b)-F(a)$ we have that μ coincides with Λ_{F} on the Borel σ-algebra $\mathcal{B}(\mathbb{R})$.
Solution: It was proven in the lectures that the Lebesgue-Stieltjes measure Λ_{F} is Borel and satisfies $\Lambda_{F}([a, b))=F(b)-F(a)$ for $a, b \in \mathbb{R}, a<b$. Now let \mathcal{A} be the algebra of finite disjoint unions of half-closed intervals in \mathbb{R}, possibly infinite on the left and on the right, namely

$$
\mathcal{A}:=\left\{\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right):-\infty \leq a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{n}<b_{n} \leq+\infty\right\},
$$

with the understanding that if $a_{1}=-\infty$ we exclude $-\infty$ from it (this is a variation of Exercise 1.1.10 (2) in the Lecture Notes). Since Λ_{F} is a Borel measure, it restricts to a pre-measure on \mathcal{A}. Define $F(-\infty)$ and $F(+\infty)$ as the corresponding limits, which exist in $\overline{\mathbb{R}}$ because F is monotone. Then it follows from the behaviour of measures with respect to unions that $\Lambda_{F}([a, b))=F(a)-F(b)$ also for infinite a or b.
Given a Borel measure μ on \mathbb{R} such that $\mu([a, b))=F(b)-F(a)$ for finite a and b, we can also pass to the limit and obtain this equality for arbitrary $-\infty \leq a<b \leq+\infty$. Therefore

$$
\mu\left(\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right)\right)=\sum_{i=1}^{n} \mu\left(\left[a_{i}, b_{i}\right)\right)=\sum_{i=1}^{n} F\left(b_{i}\right)-F\left(a_{i}\right)=\sum_{i=1}^{n} \Lambda_{F}\left(\left[a_{i}, b_{i}\right)\right)=\Lambda_{F}\left(\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right)\right) .
$$

Hence $\mu(A)=\Lambda_{F}(A)$ for every $A \in \mathcal{A}$. Since Λ_{F} is clearly σ-finite, by the uniqueness of the Carathéodory-Hahn extension (Theorem 1.2.21 in the Lecture Notes) μ coincides with Λ_{F} on $\mathcal{B}(\mathbb{R})$, as the σ-algebra generated by \mathcal{A} is $\sigma(\mathcal{A})=\mathcal{B}(\mathbb{R})$ (see Example 1.1.9 (2)).
(b) Conversely, given any Borel measure μ on \mathbb{R} that is finite on all bounded Borel sets, the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
F(x)= \begin{cases}\mu([0, x)) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -\mu([x, 0)) & \text { if } x<0\end{cases}
$$

is nondecreasing and left-continuous and μ coincides with Λ_{F} on the Borel σ-algebra $\mathcal{B}(\mathbb{R})$.

[^0]Solution: Consider any $x<y$ in \mathbb{R}. If $x \leq 0<y$, then clearly $F(x) \leq 0 \leq F(y)$. If $0<x<y$, then $F(x)=\mu([0, x)) \leq \mu([0, x))+\mu([x, y))=\mu([0, y))=F(y)$. Analogously we get $F(x) \leq F(y)$ for $x<y \leq 0$. Thus F is nondecreasing.
Now let $x_{0} \in \mathbb{R}$, we assume $x_{0}>0$ (in the other cases the argument is analogous). Then, by the continuity from below of the measure (see Theorem 1.2.14), we have

$$
F\left(x_{0}\right)=\mu\left(\left[0, x_{0}\right)\right)=\lim _{x \rightarrow x_{0}^{-}} \mu([0, x))=\lim _{x \rightarrow x_{0}^{-}} F(x),
$$

which proves that F is left-continuous.
Now note that $\mu([a, b))=F(b)-F(a)$ for all $a<b$. Therefore, by part (a), we have that $\mu=\Lambda_{F}$ on the Borel sets.

[^0]: ${ }^{1}$ A function $F: \mathbb{R} \rightarrow \mathbb{R}$ is left-continuous if $\lim _{x \rightarrow a^{-}} F(x)=F(a)$ for every $a \in \mathbb{R}$.

