
D-MATH
Prof. Francesca Da Lio

Analysis III (Measure Theory)
Sample Solutions Sheet 5

ETH Zürich
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Exercise 5.1.
Fix some 0 < β < 1/3 and define I1 = [0, 1]. For every n ≥ 1, let In+1 ⊂ In be the collection
of intervals obtained removing from every interval in In its centered open subinterval of
length βn. Then define by Cβ =

⋂∞
n=1 In, the fat Cantor set corresponding to β.

Show that:

(a) Cβ is Lebesgue measurable with measure L1(Cβ) = 1− β
1−2β

.

Solution: The set In is Lebesgue measurable, since it consists of 2n−1 intervals, and has measure
L1(In) = L1(In−1)− 2n−2βn−1 for all n ≥ 2, with L1(I1) = 1. Hence

L1(In) = 1−
n−1∑
k=1

2k−1βk = 1− 1

2

n−1∑
k=1

(2β)k = 1− 1

2

(
1− (2β)n

1− 2β
− 1

)
= 1− β − 2n−1βn

1− 2β
.

As a result Cβ =
⋂∞

n=1 In is Lebesgue measurable with measure

L1(Cβ) = lim
n→∞

L1(In) = 1− β

1− 2β
.

(b) Cβ is not Jordan measurable. Indeed it holds µ(Cβ) = 0 and µ(Cβ) = 1− β
1−2β

> 0.

Solution: First note that Cβ has empty interior, which follows from the fact that In consists of

2n−1 intervals of length (1 − β
1−2β )2

−(n−1) + βn

1−2β , which converges to 0 as n → ∞. Therefore

µ(Cβ) = 0. On the other hand µ(Cβ) ≥ L1(Cβ) = 1 − β
1−2β and this is actually an equality

since In is an elementary set for all n ≥ 1 and therefore µ(Cβ) ≤ infn≥1 L1(In) = 1− β
1−2β . Hence

µ(Cβ) = 1− β
1−2β , which is greater than 0 for 0 < β < 1/3. Hence Cβ is not Jordan measurable.

Exercise 5.2.
The goal of this exercise is to show that the Cantor triadic set C is uncountable. For that,
recall quickly the construction of C: Every x ∈ [0, 1] can be expanded in base 3, i.e., can be
written as x =

∑∞
i=1 di(x)3

−i for di(x) ∈ {0, 1, 2}. The set C is then defined as the set of
those x ∈ [0, 1] that do not have any digit 1 in their 3-expansion, i.e.:,

C := {x ∈ [0, 1] | di(x) ∈ {0, 2}, ∀i ∈ N}.

Now, the Cantor-Lebesgue function F is defined by

F : C → [0, 1], F

(
∞∑
i=1

ai
3i

)
:=

∞∑
i=1

ai
2i+1

.

(a) Show that F (0) = 0 and F (1) = 1.

Solution: We see 0 =
∑∞

i=1 0 · 3−i and as a result, F (0) =
∑∞

i=1 0 · 2−(i+1) = 0. For 1 we have the
expansion 1 = 0.2222..., so 1 =

∑∞
i=1 2 · 3−i and therefore

F (1) =
∞∑
i=1

2 · 1

2i+1
=

1

2
·

∞∑
i=0

1

2i
=

1

2
· 1

1− 1
2

= 1.
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(b) Show that F is well-defined and continuous on C.

Solution: In general, expansions in the base 3 of an element x ∈ [0, 1] are not unique, see for
example 0.1 = 0.022222..... However, if we restrict ourselves to expansions only using the coefficients
0 and 2, the expansion becomes unique, which shows that F is well-defined on C. (It could be
easily shown that F would even be well-defined on [0, 1] by investigating periodic expansions more
closely).

We now proceed to show that F is continuous on C. Let ε > 0. Take any x ∈ C and {xn}∞n=0 any
sequence in C converging to x. Take N ∈ N such that 2−N < ε. Because of the convergence of
{xn}∞n=0 to x, there is a M > N such that |xn − x| < 3−M , for all n > M . This implies that x und
xn lie in the same interval of Cn for all n > M , where

Cn = {x ∈ [0, 1] | di(x) ∈ {0, 2},∀i ≤ n},

is the n-th approximation of the Cantor set C (see lecture). In particular, this shows that di(x) =
di(xn) for any i ≤ M . Consequently, we see that

|F (xn)− F (x)| ≤
∞∑

k=M+1

1

2k
=

1

2M
<

1

2N
< ε,

which implies the continuity of F .

(c) Show that F is surjective.

Solution: Let y ∈ [0, 1] be any element. The expansion of y in the basis 2 is assumed to be
y =

∑∞
k=1 bk · 2−k with bk ∈ {0, 1}. Define ak := 2bk for all k ≥ 1. In this case, x =

∑∞
k=1 ak · 3−k

is by definition an element of C (because ak ∈ {0, 2}) and it holds

F (x) = F

( ∞∑
k=1

ak
3k

)
=

∞∑
k=1

ak
2k+1

=

∞∑
k=1

bk
2k

= y.

Therefore, F is surjective.

(d) Conclude that C is uncountable.

Solution: F is a continuous map, which sends C surjectively onto [0, 1]. As [0, 1] is uncountable,
the set C has to be uncountable as well.

Exercise 5.3. ♣
Which of the following statements are true?

(a) There is a subset A ⊂ R which is not Lebesgue-measurable but such that the set B :=

{x ∈ A : x is irrational} is Lebesgue-measurable. %

(b) There exist two disjoint sets A,B ⊂ Rn which are not Ln-measurable but whose union

is Ln-measurable. !

(c) If the boundary of Ω ⊂ Rn has Ln-measure zero, then Ω is Ln-measurable. !

2 / 4



D-MATH
Prof. Francesca Da Lio

Analysis III (Measure Theory)
Sample Solutions Sheet 5

ETH Zürich
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(d) Let A ⊂ [0, 1] be a set which is not L1-measurable. Then the set B := {(x, x) : x ∈ A} ⊂
R2 is not L2-measurable. %

Exercise 5.4.
In this exercise we want to prove that there is a one-to-one correspondence between the
nondecreasing left-continuous1 functions F on R with F (0) = 0 and the Borel measures on
R that are finite on bounded Borel sets.

(a) Given any nondecreasing left-continuous function F : R → R, show that the Lebesgue-
Stieltjes measure ΛF generated by F is the unique Borel measure on R that is equal to
F (b) − F (a) on [a, b). Namely, for every other Borel measure µ on R such that µ([a, b)) =
F (b)− F (a) we have that µ coincides with ΛF on the Borel σ-algebra B(R).
Solution: It was proven in the lectures that the Lebesgue-Stieltjes measure ΛF is Borel and satisfies
ΛF ([a, b)) = F (b) − F (a) for a, b ∈ R, a < b. Now let A be the algebra of finite disjoint unions of
half-closed intervals in R, possibly infinite on the left and on the right, namely

A :=

{
n⋃

i=1

[ai, bi) : −∞ ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ +∞

}
,

with the understanding that if a1 = −∞ we exclude −∞ from it (this is a variation of Exercise
1.1.10 (2) in the Lecture Notes). Since ΛF is a Borel measure, it restricts to a pre-measure on A.

Define F (−∞) and F (+∞) as the corresponding limits, which exist in R because F is monotone.
Then it follows from the behaviour of measures with respect to unions that ΛF ([a, b)) = F (a)−F (b)
also for infinite a or b.

Given a Borel measure µ on R such that µ([a, b)) = F (b)−F (a) for finite a and b, we can also pass
to the limit and obtain this equality for arbitrary −∞ ≤ a < b ≤ +∞. Therefore

µ

(
n⋃

i=1

[ai, bi)

)
=

n∑
i=1

µ([ai, bi)) =
n∑

i=1

F (bi)− F (ai) =
n∑

i=1

ΛF ([ai, bi)) = ΛF

(
n⋃

i=1

[ai, bi)

)
.

Hence µ(A) = ΛF (A) for every A ∈ A. Since ΛF is clearly σ-finite, by the uniqueness of the
Carathéodory–Hahn extension (Theorem 1.2.21 in the Lecture Notes) µ coincides with ΛF on
B(R), as the σ-algebra generated by A is σ(A) = B(R) (see Example 1.1.9 (2)).

(b) Conversely, given any Borel measure µ on R that is finite on all bounded Borel sets, the
function F : R → R defined as

F (x) =


µ([0, x)) if x > 0

0 if x = 0

−µ([x, 0)) if x < 0

is nondecreasing and left-continuous and µ coincides with ΛF on the Borel σ-algebra B(R).

1A function F : R → R is left-continuous if limx→a− F (x) = F (a) for every a ∈ R.
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Solution: Consider any x < y in R. If x ≤ 0 < y, then clearly F (x) ≤ 0 ≤ F (y). If 0 < x < y,
then F (x) = µ([0, x)) ≤ µ([0, x)) + µ([x, y)) = µ([0, y)) = F (y). Analogously we get F (x) ≤ F (y)
for x < y ≤ 0. Thus F is nondecreasing.

Now let x0 ∈ R, we assume x0 > 0 (in the other cases the argument is analogous). Then, by the
continuity from below of the measure (see Theorem 1.2.14), we have

F (x0) = µ([0, x0)) = lim
x→x−

0

µ([0, x)) = lim
x→x−

0

F (x),

which proves that F is left-continuous.

Now note that µ([a, b)) = F (b)− F (a) for all a < b. Therefore, by part (a), we have that µ = ΛF

on the Borel sets.
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