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Exercise 6.1.
Let f : [0, 1] → R be an α-Hölder continuous function, namely, there is a constant L > 0
such that |f(x)−f(y)| ≤ L|x−y|α for every x, y ∈ [0, 1], where 0 < α ≤ 1 is a fixed number.
Let G = {(x, f(x)) : x ∈ [0, 1]} ⊂ R2 denote its graph.

(a) Show that L2(G) = 0.

Solution: We can show more generally that if f : [0, 1] → R is a continuous function, then its
graph has Lebesgue measure zero. Given ε > 0, there exists δ > 0 such that if x1, x2 ∈ [0, 1] satisfy
|x1 − x2| ≤ δ, then |f(x1)− f(x2)| ≤ ε.

Choose a subdivision 0 = a0 < a1 < · · · < aN = 1 such that ai − ai−1 < δ and consider the
rectangles Ri := [ai−1, ai]× [f(ai)− ε, f(ai)+ ε] ⊂ R2, i = 1, . . . , N . We claim that these rectangles
cover the graph of f : given x ∈ [0, 1], say x ∈ [ai−1, ai] for some i, since |x− ai| ≤ |ai−1 − ai| ≤ δ,
then |f(x)− f(ai)| ≤ ε and thus (x, f(x)) ∈ Ri, which proves the claim.

Now, by the definition of the Lebesgue measure,

L2(G) ≤
N∑
i=1

vol(Ri) =
N∑
i=1

(ai − ai−1) · 2ε = 2ε
N∑
i=1

ai − ai−1 = 2ε(1− 0) = 2ε

and letting ε → 0 it follows that L2(G) = 0.

(b) ⋆ Show moreover that Hs(G) = 0 for every s > 2− α.

Solution: Let N > 0 be a natural number and consider the set of squares

QN := {Qi,j : i = 0, . . . , N − 1, j ∈ Z}

where

Qi,j :=

[
i

N
,
i+ 1

N

]
×
[
j

N
,
j + 1

N

]
.

We claim that, if N is large enough, then for each i there are at most 2LN1−α squares Qi,j that
intersect G. Indeed, fix one j0 such that Qi,j0 ∩ G ̸= ∅ and consider any other j1 such that
Qi,j1 ∩G ̸= ∅. Then there exist x0, x1 ∈ [i/N, (i+1)/N ] such that j0/N ≤ f(x0) ≤ (j0+1)/N and
j1/N ≤ f(x1) ≤ (j1 + 1)/N . But since |f(x0)− f(x1)| ≤ L|x0 − x1|α ≤ L

(
1
N

)α
, it must hold

|j0−j1| = N ·
∣∣∣∣ j0N − j1

N

∣∣∣∣ ≤ N ·
(∣∣∣∣ j0N − f(x0)

∣∣∣∣+ |f(x0)− f(x1)|+
∣∣∣∣f(x1)− j1

N

∣∣∣∣) ≤ N ·
(

2

N
+

L

Nα

)
,

so that |j0 − j1| ≤ 2 + LN1−α ≤ 2LN1−α if N is large enough. As a consequece, in total there are
at most N · 2LN1−α = 2LN2−α squares Q ∈ QN that intersect G.

To work with the definition of Hausdorff measure given in the lectures we need to work with balls
instead of squares. Thus, for each pair of indices (i, j) as before, we define Bi,j to be the ball with
the same center as Qi,j and with radius 1/N , in such a way that Qi,j ⊂ Bi,j . Now consider the
collection

BN := {Bi,j : Qi,j ∩G ̸= ∅},
which is clearly a covering of G with at most 2LN2−α balls.

Now fix s > 2− α and let δ > 0. It follows from the definition of Hs
δ that, if N > 1/δ, then

Hs
δ(G) ≤

(
1

N

)s

·#(BN ) ≤ 2LN2−α−s.
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Letting N → ∞ we find that Hs
δ(G) = 0, and finally letting δ → 0 we obtain that Hs(G) = 0.

Exercise 6.2.
Show that the graph of the function g : [0, 1] → R defined by

g(x) =

{
sin 1

x
, if x ̸= 0

0, if x = 0

has Lebesgue measure zero in R2.

Solution: The function g is not continuous, but for each a > 0, g|[a,1] is clearly continuous
(and even smooth, so α-Hölder for every α). Therefore, by Exercise 6.1(a), for each j ∈ Z+,
L2
(
graph g|[j−1,1]

)
= 0, so by the continuity property of a measure for increasing sequences of sets,

L2(graph g) = L2

 ⋃
j∈Z+

graph g|[j−1,1]

 = lim
j→∞

L2
(
graph g|[j−1,1]

)
= 0.

Exercise 6.3.
For s ≥ 0 and ∅ ≠ A ⊂ Rn, we define

Hs
∞(A) := inf

{∑
k∈I

rsk : A ⊂
⋃
k∈I

B(xk, rk), rk > 0

}
,

where the set of indices I is at most countable. One can check that Hs
∞ is a measure. Prove

that H1/2
∞ is not Borel on R.

Remark. Note that the definition of Hs
∞ coincides with Definition 1.8.1 in the Lecture Notes

for δ = ∞.

Solution: We show that the interval [0, 1] is not H1/2
∞ -measurable, from which follows that H1/2

∞
is not Borel on R.

First let us prove that H1/2
∞ ([a, b]) = ( b−a

2 )1/2 for all a < b. Note that the interval B(a+b
2 , b−a

2 + ε)

covers [a, b] for all ε > 0. Therefore we have that H1/2
∞ ([a, b]) ≤

(
b−a
2 + ε

)1/2
, which implies that

H1/2
∞ ([a, b]) ≤

(
b−a
2

)1/2
for arbitrariness of ε. On the other hand, given any finite or countable cover

{B(xk, rk)}k∈I of [a, b], the total length of the intervals of the covering should be at least b − a,

namely
∑

k∈I 2rk ≥ b− a. Hence, using that (
∑

k∈I r
1/2
k )2 ≥

∑
k∈I rk, we get

∑
k∈I

r
1/2
k ≥

(∑
k∈I

rk

)1/2

≥
(
b− a

2

)1/2

.

2 / 4



D-MATH
Prof. Francesca Da Lio

Analysis III (Measure Theory)
Sample Solutions Sheet 6

ETH Zürich
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Therefore we obtain that H1/2
∞ ([a, b]) = ( b−a

2 )1/2 for all a < b. The same proof (with the same
result) works for half-closed and open intervals.

As a result, we get
H1/2

∞ ([0, 2]) = 1 ̸= 23/2 = H1/2
∞ ([0, 1]) +H1/2

∞ ((1, 2]),

which proves that [0, 1] is not H1/2
∞ -measurable.

Exercise 6.4. ♣
Recall that a measure is called Radon if it is Borel regular and finite on compact sets.

Which of the following statements are true?

(a) The Lebesgue measure Ln on Rn is a Radon measure. !

(b) For any nondecreasing and left-continuous function F : R → R, the Lebesgue–Stieltjes

measure ΛF is a Radon measure on R. !
(c) For any s > 0, the Hausdorff measure Hs is a Radon measure on Rn. %

(d) The Dirac measure δ0 is a Radon measure on R. !

(e) For every set A ⊂ Rn, it holds Hn+1(A) = 0. !

Exercise 6.5.
Consider the continuous function f : [0, 1] → R given by

f(x) =

{
x sin 1

x
, x > 0

0, x = 0

and its graph
A := {(x, f(x)) | x ∈ [0, 1]} ⊂ R2.

(a) ⋆ Show that H1(A) = ∞.

Hint: use the σ-additivity of H1 on Borel sets to decompose the curve A into pieces which
“look like” straight lines and try to compare their H1-measure with their length.

Solution: Let an = 1/(πn) for each n ∈ Z+. By the σ-additivity of H1 (and the fact that Borel
sets are measurable), we can write

H1(A) ≥
∑
n≥1

H1
(
graph

(
f |[an+1,an]

))
.

Observe that dist((an, f(an)), (an+1, f(an+1))) ≥ |f(an) − f(an+1)| = |f(an)| + |f(an+1)| = |an| +
|an+1| ≥ 1/(πn). Thus, since the harmonic series diverges, it is enough to prove that for a smooth
connected curve γ joining two points p and q in R2, H1(γ) ≥ cdist(p, q) for some constant c > 0
(we will actually show this with c = 1/2, which is sharp).
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To see that, consider a covering B of γ by balls and extract a finite subcoveringB(x1, r1), . . . , B(xN , rN );
moreover we may assume that all these balls intersect γ. Let i1 ∈ {1, . . . , N} be such that
p ∈ B(xi1 , ri1); in particular B(xi1 , ri1) ⊂ B(p, 2ri1). Since γ is connected, the open sets B(p, 2ri1)
and

⋃
j ̸=i1

B(xj , rj) cannot disconnect γ and therefore they must have a point in common inside γ.
Thus there exists an index i2 ̸= i1 such that B(p, 2ri1)∩B(xi2 , ri2) ̸= ∅. Now it is easy to see that
the enlarged ball B(p, 2ri1 + 2ri2) contains B(xi2 , ri2) as well, so we may iterate the argument and
consider the covering of γ by B(p, 2ri1 + 2ri2) and

⋃
j ̸=i1,i2

B(xj , rj) to find a third index i3 with
B(p, 2ri1 + 2ri2) ∩B(xi3 , ri3) ̸= ∅ and deduce B(xi3 , ri3) ⊂ B(p, 2ri1 + 2ri2 + 2ri3).

By repeating this argument we conclude that all the original balls are contained in B(p, 2ri1 +
· · · + 2riN ) = B(p, 2r1 + · · · + 2rN ); in particular, q is also contained there, and it follows that
dist(p, q) ≤ 2(r1 + · · · + rN ) ≤ 2

∑
B∈B radius(B). Fix δ > 0 and take the infimum over such

collections of balls with radius at most δ to deduce that Hs
δ(γ) ≥ dist(p, q)/2, so the same holds

when we take the limit δ ↘ 0.

Remark: It is also possible to show this by considering the projection of the graph of f restricted
to [an+1, an] onto the Y-axis, which (as one can easily show) does not increase Hausdorff measures,
and conclude by comparing the H1 and L1 measures on the real line.

(b) Show that Hs(A) = 0 if s > 1.

Solution: We use the same trick as in Exercise 6.2: we can write

A = graph(f) =
⋃

j∈Z+

graph
(
f |[j−1,1]

)
and pass to the limit once we show that graph

(
f |[a,1]

)
has H1 measure zero for each a > 0. But this

is a consequence of Exercise 6.1(b): f |[a,1] is smooth and in particular Lipschitz (that is, α-Hölder
with α = 1), hence the condition s > 2− α = 1 holds.

Remark. A more explicit solution can be given by covering A by small balls and using directly
the definition of the Hausdorff measure.

(c) Conclude that dimH(A) = 1.

Solution: The fact that H1(A) = ∞ implies that dimH(A) ≥ 1, and the fact that Hs(A) = 0 for
any s > 1 implies that dimH(A) ≤ s for any s > 1. Therefore it must be dimH(A) = 1.
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