Exercise 7.1.

Let μ be a measure on \mathbb{R}^{n} and $\Omega \subseteq \mathbb{R}^{n}$ a μ-measurable set. Which of the following statements are true?
(a) If $f: \Omega \rightarrow \mathbb{R}$ is μ-measurable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel function ${ }^{1}$, then $g \circ f$ is μ-measurable.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ and suppose that for every $c \in \mathbb{R}$, the set $\{x \in[0,1]: f(x)=c\}$ is \mathcal{L}^{1}-measurable. Then f is \mathcal{L}^{1}-measurable. \boldsymbol{X}
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which is continuous \mathcal{L}^{1}-almost everywhere. Then f is \mathcal{L}^{1}-measurable.
(d) Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence of μ-measurable functions $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then the set

$$
E:=\left\{x \in \mathbb{R}^{n}: \lim _{k \rightarrow \infty} f_{k}(x) \text { exists and is finite }\right\}
$$

is μ-measurable.

Exercise 7.2.

Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. Show that the following statements are equivalent.
(i) $f^{-1}(U)$ is μ-measurable for every open set $U \subset \mathbb{R}$.
(ii) $f^{-1}(B)$ is μ-measurable for every Borel set $B \subset \mathbb{R}$.
(iii) $f^{-1}((-\infty, a))$ is μ-measurable for every $a \in \mathbb{R}$.

Solution: (i) \Leftrightarrow (ii): As all open subsets $U \subset \mathbb{R}$ are Borel, it is obvious that (ii) \Rightarrow (i). On the other hand, the following collection $\left\{B \subset \mathbb{R} \mid f^{-1}(B) \mu\right.$-measurable $\}$ is a σ-algebra, see Exercise 1.4 (b). If this σ-algebra contains all open subsets, then it contains all Borel sets, which proves that (i) \Rightarrow (ii).
(ii) \Leftrightarrow (iii): Once more, it is clear that (ii) \Rightarrow (iii), because the intervals $(-\infty, a)$ are Borel sets for all $a \in \mathbb{R}$. On the other hand, we know that $((-\infty, a))_{a \in \mathbb{R}}$ generates the Borel σ-algebra, which proves the other implication.

Exercise 7.3.

Let (X, μ, Σ) be a measure space and $f, g: X \rightarrow \mathbb{R}$ two measurable functions on X. Show that the sets $\{x \mid f(x)=g(x)\}$ and $\{x \mid f(x)<g(x)\}$ are measurable.

[^0]Solution: Since f and g are measurable, then $h:=f-g$ is measurable as well. As a result, we know that

$$
\{x \mid f(x)=g(x)\}=h^{-1}(\{0\})
$$

is measurable and the same holds for

$$
\{x \mid f(x)<g(x)\}=h^{-1}((-\infty, 0)) .
$$

Exercise 7.4.

In this exercise, we construct a set which is Lebesgue measurable but not Borel, and use the construction to give an example of a continuous $G: \mathbb{R} \rightarrow \mathbb{R}$ and a Lebesgue measurable function $H: \mathbb{R} \rightarrow \mathbb{R}$ such that $H \circ G$ is not Lebesgue measurable.
(a) Let $h:[0,1] \rightarrow[0,1]$ be the Cantor function, which is the unique monotonically increasing extension of the function $F: C \rightarrow[0,1]$ seen in Exercise 5.2, where $C \subset[0,1]$ is the Cantor set. Define $g:[0,1] \rightarrow[0,2]$ by $g(x):=h(x)+x$. Show that g is strictly monotone and a homeomorphism.
Solution: Strict monotonicity is a direct consequence of h being monotonically increasing and $x \mapsto x$ being strictly increasing. We just have to check whether g^{-1} is continuous. As $[0,1]$ is compact, the image under g of each closed subset is a compact subset of $[0,2]$, hence closed. By bijectivity, this implies that g is open and thus a homeomorphism.
(b) Show that $\mathcal{L}^{1}(g(C))=1$.

Hint: Use the natural decomposition of $[0,1] \backslash C$ to deduce the result.
Solution: Observe that

$$
[0,1] \backslash C=\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n-1}} I_{n, k},
$$

where $I_{n, k}$ is the k-th interval removed in the n-th step of the construction of C and has length 3^{-n}. Hence we have

$$
\mathcal{L}^{1}([0,2] \backslash g(C))=\mathcal{L}^{1}(g([0,1] \backslash C))=\mathcal{L}^{1}\left(g\left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n-1}} I_{n, k}\right)\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} \mathcal{L}^{1}\left(g\left(I_{n, k}\right)\right) .
$$

To conclude, notice that h is constant on each $I_{n, k}$. Therefore, we easily deduce $\mathcal{L}^{1}\left(g\left(I_{n, k}\right)\right)=$ $\mathcal{L}^{1}\left(I_{n, k}\right)=3^{-n}$. Inserting this into the sequence of equations above, we conclude

$$
\mathcal{L}^{1}([0,2] \backslash g(C))=\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n}}=1,
$$

which implies

$$
1+\mathcal{L}^{1}(g(C))=\mathcal{L}^{1}([0,2] \backslash g(C))+\mathcal{L}^{1}(g(C))=\mathcal{L}^{1}([0,2])=2,
$$

and this implies the desired result.
(c) Use Exercise 4.3 (a) to find a non-measurable subset $E \subset g(C)$ and define $A:=g^{-1}(E)$. Show that A is a Lebesgue zero set and thus Lebesgue measurable.
Solution: Observe that $A=g^{-1}(E) \subset g^{-1}(g(C))=C$. As C is a Lebesgue zero set, so is A, and consequently A is Lebesgue measurable.
(d) Show that A is not a Borel set.

Hint: Otherwise, the preimage of A with respect to continuous maps would necessarily be Borel and thus Lebesgue measurable as well.
Solution: Assume A were Borel. Then, due to g^{-1} being continuous by the first part of this exercise, we know

$$
\left(g^{-1}\right)^{-1}(A)=g(A)=g\left(g^{-1}(E)\right)=E \text { is a Borel set. }
$$

However, E is not Lebesgue measurable and hence not Borel, contradicting the conclusion. Therefore, A is not Borel.
(e) Find appropriate H, G as outlined above such that $H \circ G$ is not Lebesgue measurable, using the sets and functions introduced in the previous subtasks.
Solution: Let us take $H=\chi_{A}$ and $G=g^{-1}$, where g and A are as previously introduced. We have thus seen that H is Lebesgue measurable and G is continuous. Assume that $H \circ G$ is Lebesgue measurable. Note that $\{1\}$ is a closed subset and thus, $(H \circ G)^{-1}(\{1\})$ would be Lebesgue measurable. But

$$
(H \circ G)^{-1}(\{1\})=G^{-1}\left(H^{-1}(\{1\})\right)=G^{-1}(A)=g(A)=E,
$$

which is not Lebesgue measurable, contradiction.

Exercise 7.5.

Let μ be a Borel measure on \mathbb{R}. Show that every monotone function $f:[a, b] \rightarrow \mathbb{R}$ is μ measurable.

Solution: As $f^{-1}((-\infty, c))$ is either an interval in $[a, b]$ or the empty set (when $\left.c \notin f([a, b])\right), f$ is μ-measurable according to Exercise 7.2.

[^0]: ${ }^{1}$ A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel iff $g^{-1}(U)$ is a Borel set for every open set $U \subseteq \mathbb{R}$.

