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Exercise 8.1.
Let µ be a measure on Rn, Ω ⊆ Rn a µ-measurable set and f : Ω → [0,∞] a µ-measurable
function. Consider the sets Aj ⊆ Ω from Theorem 2.2.6 of the Lecture Notes, defined so
that the sequence of functions

fk =
k∑

j=1

1

j
χAj

converges pointwise to f . Show that if f is bounded, then fk converge uniformly to f , that
is,

sup
x∈Ω

|f(x)− fk(x)| −→ 0 as k → ∞.

Solution: Suppose that f(x) ≤ M for every x ∈ Ω and let k0 > 2 be large enough so that

k0∑
j=1

1

j
> M.

Given x ∈ Ω and k ≥ k0, let j be the largest integer ≤ k such that x /∈ Aj . Notice that such j

must exist because otherwise we would have f(x) ≥
∑k

j=1
1
j > M . In this case fj(x) = fj−1(x)

and moreover, by definition of Aj ,

f(x) < fj−1(x) +
1

j
= fj(x) +

1

j
, (1)

but x ∈ Aℓ for every j < ℓ ≤ k, which implies that

fj(x) +
k∑

ℓ=j+1

1

ℓ
≤ f(x). (2)

Putting together (1) and (2) we get that

k∑
ℓ=j+1

1

ℓ
<

1

j
.

It is easy to check that such inequality cannot hold if k − j ≥ 3, for example because of the easy
inequality

1

j
=

1

2j
+

1

3j
+

1

6j
<

1

j + 1
+

1

j + 2
+

1

j + 3

which is true for j ≥ 1. Thus j ≥ k − 2. Now (1) and the monotonicity of fk imply

0 ≤ f(x)− fk(x) ≤ f(x)− fj(x) <
1

j
≤ 1

k − 2
,

from which the uniform convergence follows.
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Exercise 8.2.
Let f : Ω → R be µ-measurable. Prove that there exists a sequence {fk}∞k=1 of simple
functions fk : Ω → R satisfying |fk(x)| ≤ |fk+1(x)| and limk→∞ fk(x) = f(x) for every
x ∈ Ω.

In particular, this shows that |fk(x)| ≤ |f(x)| for each x ∈ Ω and k ≥ 1.

Solution: Write f = f+ − f−, where f+ = max{0, f} and f− = max{0,−f}. The construction
of Theorem 2.2.6 of the Lecture Notes gives two sequences of simple functions s+k , s

−
k such that

s±k ↗ f± monotonically and pointwise. Thus it follows that fk := s+k − s−k converge pointwise to
f = f+ − f− and |fk| = s+k + s−k ≤ s+k+1 + s−k+1 = |fk+1| as desired.

Exercise 8.3. ♣
Which of the following assertions are true?

(a) Given a sequence {fk} of Lebesgue-measurable functions on R converging to 0 in measure,
there is a subset A ⊂ R of positive measure and a subsequence which converges uniformly
on A. !

(b) If f : R → R is differentiable, then f ′ is Lebesgue-measurable. !

(c) There exists a function f : Ω → [0,∞) such that f is not measurable but
√
f is measur-

able. %

(d) The sequence fn(x) = e−n(1−sinx) converges in measure to the function f ≡ 0 on any

bounded interval [a, b] ⊂ R. !

Exercise 8.4.
Let fk : Rn → R be Ln-measurable functions, for k ∈ N. Assume that

Ln({x ∈ Rn | |fk(x)− fk+1(x)| > 2−k}) < 2−k

for all k ∈ N. Show that the limit lim
k→∞

fk(x) exists almost everywhere.

Solution: Define Ak = {x ∈ Rn | |fk(x)−fk+1(x)| ≤ 2−k}. By assumption, we have Ln(Ac
k) < 2−k.

Let Bl := ∩k≥lAk, then Bl+1 ⊃ Bl and equivalently Bc
l+1 ⊂ Bc

l . Since

Ln(Bc
l ) ≤

∑
k≥l

Ln(Ac
k) <

∑
k≥l

2−k = 2−l+1

(in particular Ln(Bc
1) ≤ 1), it follows

Ln

((⋃
l∈N

Bl

)c)
= Ln

(⋂
l∈N

Bc
l

)
= lim

l→∞
Ln(Bc

l ) ≤ lim
l→∞

2−l+1 = 0. (3)
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For x ∈ Bl and l < m < n ∈ N, it holds by the triangle inequality:

|fm(x)− fn(x)| ≤
n−1∑
k=m

|fk(x)− fk+1(x)| ≤
n−1∑
k=m

2−k ≤ 2−m+1.

Hence, for every x ∈ Bl, fk(x) is a Cauchy sequence and consequently, the limit limk→∞ fk(x)
exists. Because of (3),

⋃
l∈NBl is almost everywhere and therefore limk→∞ fk(x) exists for almost

all x ∈ Rn.

Exercise 8.5.
Let µ be a measure on Rn and Ω ⊂ Rn be µ-measurable. Let f : Ω → R be a finite,
µ-measurable function, and (fk)k∈N a sequence of µ-measurable functions fk : Ω → R.
(a) Suppose that every subsequence (fkj)j∈N contains a subsequence that converges to f in
measure. Show that the whole sequence (fk)k∈N converges to f in measure.

Solution: Suppose the opposite was true. Then there exist ε > 0, δ > 0 and a subsequence
{fkj}j∈N, such that µ({x | |f(x)− fkj (x)| > ε}) > δ for all j ∈ N. This subsequence cannot contain
another subsequence converging in measure µ. Therefore, {fk}k∈N converges in measure.

(b) Show that the analogous statement from (a) is not true if we replace “convergence in
measure” by “convergence pointwise almost everywhere”. Namely, show that there exists a
sequence (fk) and a function f such that every subsequence of (fk) has a further subsequence
that converges a.e. to f , but the whole (fk) does not converge a.e. to any function.

Solution: A counterexample is provided by the sequence fk : [0, 1) → R with fk = χ[k/2n−1,(k+1)/2n−1))

for 2n ≤ k < 2n+1. For any x ∈ [0, 1), the sequence (fk(x))k∈N is not convergent.

Claim: Every subsequence of {fk}k∈N possesses an L1-almost everywhere convergent subsequence.

Proof : Let {gj}j∈N = {fkj}j∈N be a subsequence of {fk}k∈N. We inductively construct a sequence
of intervals {In}n∈N satisfying the following conditions:

1. L1(In) = 2−n;

2. For any n ∈ N, there is a subsequence {g(n)j }j∈N of {gj}j∈N such that supp(g
(n)
j ) ⊂ In;

3. {g(n+1)
j }j∈N is a subsequence of {g(n)j }j∈N.

For n = 1, we choose the intervals [0, 12) and [12 , 1). For any gj we either have supp gj ⊂ [0, 12) or
supp gj ⊂ [12 , 1). As a result, at least one of the intervals contains infinitely many of the supports

of gj . We denote this interval by I1. The gj ’s with support in I1 form the subsequence {g(1)j }j∈N.

Let {g(n)j }j∈N be a sequence with the properties above. We define the intervals Kl = [l ·2−(n+1), (l+

1) · 2−(n+1)) for l = 0, . . . , 2n+1 − 1. For all g
(n)
j with j sufficiently large, there is l = l(j) such that

supp(g
(n)
j ) ⊂ Kl. As a result, at least one of the Kl, which we denote by In+1, contains the support

of infinitely many g
(n)
j . These g

(n)
j form the subsequence {g(n+1)

j }j∈N.
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Using the construction above, we take a diagonal sequence hm := g
(m)
m . Note that {hm}m∈N is a

subsequence of {fkj}j∈N. Let N :=
⋂

n∈N In. Because of upper continuity of the measure, we have
L1(N) = limn→∞ L1(In) = 0.

Now let x /∈ N . Then there is a n = n(x), such that x /∈ In(x). Consequently, hm(x) = 0 for all
m > n(x). So hm converges pointwise L1-almost everywhere to zero.

Exercise 8.6. ⋆
Counterexample to ε = 0 in Lusin’s Theorem: Find an example of a L1-measurable function
f : [0, 1] → R such that for every L1-measurable set M ⊂ [0, 1] with L1(M) = 1, the
restriction f |M : M → R is discontinuous in all but finitely many points of M .

Hint: You may use that there exists a Lebesgue measurable subset A ⊂ [0, 1] such that

L1(U ∩ A) · L1(U ∩ Ac) > 0

for all nonempty open subsets U ⊂ [0, 1]. Such a set A can be constructed using the fat
Cantor set (see Exercise 1.6.2 in the lecture notes).

Solution: Let f = χA where A ⊂ [0, 1] is as in the hint. This set will be constructed in a forth-
coming exercise. Moreover, let M ⊂ [0, 1] as described above. We show that f |M is discontinuous
in every point except for {0, 1}. Let x ∈ M \{0, 1} and choose sequences an ≤ x ≤ bn that converge
monotonically to x. Observe that, for all In := (an, bn), it holds

L1(In ∩A) · L1(In ∩Ac) > 0.

Using that L1([0, 1] \ M) = 0 as well as Caratheodory’s characterisation of measurability, we get
L1(In ∩A) = L1(In ∩A∩M) +L1((In ∩A) \M) = L1(In ∩A∩M) and analogously L1(In ∩Ac) =
L1(In ∩Ac ∩M). Therefore, the previous inequality can be read as

L1(In ∩A ∩M) · L1(In ∩Ac ∩M) > 0.

This implies that there exists xn, yn ∈ In such that

xn ∈ In ∩A ∩M, yn ∈ In ∩Ac ∩M,

therefore f(xn) = 1, f(yn) = 0. Observe that xn → x and similarily yn → x. This provides the
desired contradiction to continuity.

Exercise 8.7.
Counterexample to δ = 0 in Egoroff’s Theorem: Find an example of a sequence of L1-
measurable functions fk : [0, 1] → R that converges pointwise almost everywhere to a L1-
measurable (L1-almost everywhere finite) function f : [0, 1] → R, but for every set F ⊆ [0, 1]
with L1(F ) = L1([0, 1]) the convergence on F is not uniform.
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Solution: Let fk(x) = xk for x ∈ [0, 1], which converges pointwise to f ≡ 0 on [0, 1) and f(1) = 1.
Let F ⊂ [0, 1] be any set of full measure, and suppose that fk converges uniformly in F . Therefore,
there exists someK ∈ N such that |fk(x)−f(x)| < 1

2 for k ≥ K. In particular, for every x ∈ F∩[0, 1)
it must hold that xK < 1

2 , so that x < 1/ K
√
2. This implies that F is disjoint with the interval

(1/ K
√
2, 1), and thus cannot have full measure.
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