Exercise 9.1.

Which of the following statements are true?
4 correct answers are enough for the bonus.
(a) Let $\left\{f_{k}\right\}$ be a sequence of non-negative measurable functions on \mathbb{R} such that $f_{k} \rightarrow f$ almost everywhere. Then $\lim _{k \rightarrow \infty} \int_{\mathbb{R}} f_{k} d \mathcal{L}^{1}$ exists and

$$
\int_{\mathbb{R}} f d \mathcal{L}^{1} \leq \lim _{k \rightarrow \infty} \int_{\mathbb{R}} f_{k} d \mathcal{L}^{1}
$$

Solution: \boldsymbol{X} The limit may not exist, for example, set $f_{k}=\chi_{[k, k+1]}$ for k even and $f_{k} \equiv 0$ for k odd; then this sequence converges pointwise to zero but the values of the integrals oscillate.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be \mathcal{L}^{1}-summable. Then for each nonnegative integer $k, x^{k} f(x)$ is \mathcal{L}^{1}-summable in $[0,1]$.
(c) Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be \mathcal{L}^{1}-summable. Then $\lim _{x \rightarrow+\infty}|f(x)|=0$.
(d) Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be \mathcal{L}^{1}-summable. Then there exists a sequence $x_{n} \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} x_{n} f\left(x_{n}\right)=0$.
Solution: $\sqrt{ }$ Assume the opposite: this means that there is some $\varepsilon>0$ and $K \in \mathbb{R}$ such that $x|f(x)| \geq \varepsilon$ for all $x \geq K$. Therefore $f(x) \geq \varepsilon / x$ on $[K,+\infty)$, which is not a summable function, giving a contradiction.
(e) There exists a sequence $\left\{f_{n}\right\}$ of \mathcal{L}^{1}-summable functions on $(0, \infty)$ such that $\left|f_{n}(x)\right| \leq 1$ for all x and all $n, \lim _{n \rightarrow \infty} f_{n}(x)=0$ for all x, and $\lim _{n \rightarrow \infty} \int_{(0, \infty)} f_{n} d \mathcal{L}^{1}=1$.
(f) There exists a sequence $\left\{f_{n}\right\}$ of \mathcal{L}^{1}-integrable functions on $[0,1]$ such that $f_{n} \rightarrow 0$ pointwise and yet $\int_{[0,1]} f_{n} d \mathcal{L}^{1} \rightarrow+\infty$.

Exercise 9.2.

(a) Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of μ-measurable functions on a μ-measurable set $\Omega \subset \mathbb{R}^{n}$. Show that the series $\sum_{k=1}^{\infty} f_{k}(x)$ converges μ-almost everywhere, if

$$
\sum_{k=1}^{\infty} \int_{\Omega}\left|f_{k}\right| d \mu<\infty
$$

Solution: Let us define

$$
g_{k}:=\sum_{j=1}^{k}\left|f_{j}\right|
$$

and it obviously holds $g_{k} \leq g_{k+1}$ for all $k \geq 1$. Using monotone convergence of integrals, we see

$$
\begin{aligned}
\int_{\Omega} \sum_{j=1}^{\infty}\left|f_{j}\right| d \mu & =\int_{\Omega} \lim _{k \rightarrow \infty} g_{k} d \mu=\lim _{k \rightarrow \infty} \int_{\Omega} g_{k} d \mu=\lim _{k \rightarrow \infty} \int_{\Omega} \sum_{j=1}^{k}\left|f_{j}\right| d \mu \\
& =\lim _{k \rightarrow \infty} \sum_{j=1}^{k} \int_{\Omega}\left|f_{j}\right| d \mu=\sum_{j=1}^{\infty} \int_{\Omega}\left|f_{j}\right| d \mu .
\end{aligned}
$$

Since $\int_{\Omega} \sum_{j=1}^{\infty}\left|f_{j}\right| d \mu=\sum_{j=1}^{\infty} \int_{\Omega}\left|f_{j}\right| d \mu<\infty$, it holds $\sum_{j=1}^{\infty}\left|f_{j}\right|<\infty \mu$-almost everywhere.
(b) Let $\left\{r_{k}\right\}_{k \in \mathbb{N}}$ be an ordering of $\mathbb{Q} \cap[0,1]$ and $\left(a_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}$ be such that $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent. Show that $\sum_{k=1}^{\infty} a_{k}\left|x-r_{k}\right|^{-1 / 2}$ is absolutely convergent for almost every $x \in[0,1]$ (with respect to the Lebesgue measure).
Solution: We apply part (a) to the functions $f_{k}(x)=a_{k}\left|x-r_{k}\right|^{-1 / 2}$ with μ equal to the Lebesgue measure. It holds

$$
\begin{aligned}
\int_{0}^{1}\left|f_{k}(x)\right| d x & =\left|a_{k}\right| \int_{r_{k}}^{1} \frac{1}{\sqrt{x-r_{k}}} d x+\int_{0}^{r_{k}} \frac{1}{\sqrt{r_{k}-x}} d x \\
& =2\left|a_{k}\right|\left(\sqrt{1-r_{k}}+\sqrt{r_{k}}\right) \leq 2 \sqrt{2}\left|a_{k}\right| .
\end{aligned}
$$

Therefore, $\sum_{k=1}^{\infty} \int_{0}^{1}\left|f_{k}\right| d x \leq 2 \sqrt{2} \sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$ by assumption and with part (a) of the exercise, the result follows.

Exercise 9.3.

Find an example of a continuous bounded function $f:[0, \infty) \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow \infty} f(x)=0$ and

$$
\int_{0}^{\infty}|f(x)|^{p} d x=\infty
$$

for all $p>0$.
Solution: The function $f:[0, \infty) \rightarrow \mathbb{R}$ defined as

$$
f(x)=\frac{1}{\log (2+x)}
$$

is continuous, bounded by $f(x) \leq \log (2)^{-1}$ and $\lim _{x \rightarrow \infty} f(x)=0$. Since $\log (2+x) \leq p(2+x)^{\frac{1}{p}}$ for all $p>0$, we get

$$
\left|\frac{1}{\log (2+x)}\right|^{p} \geq \frac{1}{p^{p}(2+x)},
$$

which is not integrable over $[0, \infty)$.

Exercise 9.4.

Let $f, g: \Omega \rightarrow \overline{\mathbb{R}}$ be μ-summable functions and assume that

$$
\int_{A} f d \mu \leq \int_{A} g d \mu
$$

for all μ-measurable subsets $A \subset \Omega$. Show that $f \leq g \mu$-almost everywhere. Moreover, conclude that, if

$$
\int_{A} f d \mu=\int_{A} g d \mu
$$

for all μ-measurable subsets $A \subset \Omega$, then $f=g \mu$-almost everywhere.

Solution: Define $A:=\{g<f\}$ and $A_{n}:=\left\{g+\frac{1}{n} \leq f\right\}$ for all $n \in \mathbb{N}$. Notice that $\bigcup_{n \in \mathbb{N}} A_{n}=A$ and that A_{n}, A are measurable. Therefore, we find:

$$
\frac{1}{n} \mu\left(A_{n}\right)+\int_{A_{n}} g d \mu=\int_{A_{n}}\left(g+\frac{1}{n}\right) d \mu \leq \int_{A_{n}} f d \mu \leq \int_{A_{n}} g d \mu .
$$

Comparing the LHS and the RHS, we obtain $\mu\left(A_{n}\right)=0$. Therefore, by continuity of the measure, we get $\mu(A)=0$.
The second part of the exercise follows trivially from the first part.

Exercise 9.5.

Let $f_{n}: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ be Lebesgue measurable functions. Find examples for the following statements.
(a) $f_{n} \rightarrow 0$ uniformly, but not $\int\left|f_{n}\right| d x \rightarrow 0$.

Solution: The functions $f_{n}=\frac{1}{n} \cdot \chi_{[0, n]}$ are easily an example.
(b) $f_{n} \rightarrow 0$ pointwise and in measure, but neither $f_{n} \rightarrow 0$ uniformly nor $\int\left|f_{n}\right| d x \rightarrow 0$.

Solution: The functions $f_{n}=n \cdot \chi_{\left[\frac{1}{n}, \frac{2}{n}\right]}$ are an example. All properties are trivially true except for convergence in measure. For this, for all $\varepsilon>0$, notice that

$$
\mathcal{L}^{1}\left(\left|f_{n}-0\right|>\varepsilon\right) \leq \frac{1}{n} \rightarrow 0 .
$$

(c) $f_{n} \rightarrow 0$ pointwise, but not in measure.

Solution: The functions $f_{n}=\chi_{[n, n+1]}$ are an example. They clearly not converge in measure as the limit would necessarily have to agree with the pointwise limit, since appropriate subsequences of a sequence converging in measure converge pointwise to the same limit. However it is obvious that this is not the case here.

Exercise 9.6.

Let $f:[0,1] \rightarrow \mathbb{R}$ be \mathcal{L}^{1}-summable. Show that for a set $E \subset[0,1]$ of positive measure it holds that

$$
f(x) \leq \int_{[0,1]} f(y) d \mathcal{L}^{1}(y)
$$

for every $x \in E$.

Solution: We argue by contradiction: if the statement is not true, then for almost every $x \in[0,1]$ it holds that $f(x)>J$, where $J:=\int_{[0,1]} f(y) d \mathcal{L}^{1}(y)$. Let

$$
A_{n}:=\left\{x \in[0,1]: f(x)>J+\frac{1}{n}\right\},
$$

which is clearly a measurable set for each $n \in \mathbb{Z}^{+}$. It follows from our assumption that $\mathcal{L}^{1}([0,1] \backslash$ $\left.\bigcup_{n \geq 1} A_{n}\right)=0$ and in particular $\mathcal{L}^{1}\left(A_{n}\right)>0$ for some n. Then

$$
\begin{aligned}
J=\int_{[0,1]} f(y) d \mathcal{L}^{1}(y) & =\int_{A_{n}} f(y) d \mathcal{L}^{1}(y)+\int_{A_{n}^{c}} f(y) d \mathcal{L}^{1}(y) \\
& \geq\left(J+\frac{1}{n}\right) \mathcal{L}^{1}\left(A_{n}\right)+J \mathcal{L}^{1}\left(A_{n}^{c}\right)=J+\frac{1}{n},
\end{aligned}
$$

which is clearly a contradiction.

