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Exercise 10.1. ♣
Which of the following statements are true?

(a) Let {fk} be a sequence of nonnegative L1-measurable functions on R converging uni-
formly to a function f . Then limk→∞

∫
R fk dL

1 exists and∫
R
f dL1 ≤ lim

k→∞

∫
R
fk dL1.

Solution: % Even with uniform convergence the limit may not exist: consider for example fk(x) =
k−1χ[0,k](x) for k even and fk ≡ 0 for k odd.

(b) Let fk : [0, 1] → [0, 1] be L1-measurable functions for k = 1, 2, . . . and suppose that
fk → f almost everywhere. Then limk→∞

∫
[0,1]

fk dL1 exists and∫
[0,1]

f dL1 ≤ lim
k→∞

∫
[0,1]

fk dL1.

Solution: ! This is a consequence of the Dominated Convergence Theorem and actually equality
always holds.

(c) Let f be L1-summable on R and E1 ⊆ E2 ⊆ E3 ⊆ · · · be L1-measurable subsets of R.
Then the limit limn→∞

∫
En

f dL1 exists.

Solution: ! It exists and is equal to
∫
∪n≥1En

f dL1 by the Dominated Convergence Theorem.

(d) Let {fn} be a sequence of continuous Lebesgue-summable functions on [0,∞) which
converges to a Lebesgue-summable function f . Then

lim
n→∞

∫
[0,∞)

|fn(x)− f(x)| L1(x) = 0.

Solution: % Take for example

fn(x) =

{
1
n − x

n2 , x ∈ (0, n)

0, otherwise
.

Exercise 10.2.
Let f : R → [0,+∞] be L1-measruable. Assume that for all n ≥ 1,∫

R

n2

n2 + x2
|f(x)| dL1(x) ≤ 1.
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Show that ∫
R
|f | dL1 ≤ 1.

Solution: Observe that we can write the integrand as

gn(x) :=
n2

n2 + x2
|f(x)| =

(
1− x2

n2 + x2

)
|f(x)|,

which shows that for a fixed x it is monotonically increasing in n. Moreover the pointwise limit of
gn(x) is clearly equal to |f(x)| for every x. Therefore we may apply the Monotone Convergence
Theorem and get∫

R
|f(x)| dL1(x) = lim

n→∞

∫
R
gn(x) dL1(x) = lim

n→∞

∫
R

n2

n2 + x2
|f(x)| dL1(x) ≤ 1.

Exercise 10.3.
Compute the limit

lim
n→∞

∫
[0,n]

(
1 +

x

n

)n
e−2x dx.

Solution: Notice that we can write the integrals as
∫
[0,∞) fn dx, where

fn(x) =
(
1 +

x

n

)n
e−2xχ[0,n](x).

We claim that this sequence of functions is monotonically increasing: given n, it is clear that
fn(x) ≤ fn+1(x) for x > n, so we may focus on the case 0 ≤ x ≤ n and forget about the
characteristic function. We have to show that(

1 +
x

n

)n
≤
(
1 +

x

n+ 1

)n+1

.

Taking both sides to the power 1/n, this is equivalent to

1 +
x

n
≤
(
1 +

x

n+ 1

)n+1
n

Letting y := x/(n+ 1) and α := n+1
n > 1, we can rewrite this inequality as

1 + αy ≤ (1 + y)α,

which is well-known (it can be easily shown for example by applying the Mean Value Theorem to
the function t 7→ (1 + t)α between 0 and y).
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Let us now compute the pointwise limit of the increasing sequence fn. Again we can ignore the
characteristic function because for every x it becomes eventually 1.

lim
n→∞

fn(x) = lim
n→∞

(
1 +

x

n

)n
e−2x = ex · e−2x = e−x.

We can now conclude by applying the Monotone Convergence Theorem:

lim
n→∞

∫
[0,n]

(
1 +

x

n

)n
e−2x dx = lim

n→∞

∫
[0,∞)

fn(x) dx =

∫
[0,∞)

lim
n→∞

fn(x) dx =

∫
[0,∞)

e−x dx = 1.

Exercise 10.4. ⋆
Let fk, f be L1-summable functions on R which are nonnegative L1-almost everywhere and
satisfy the following additional hypotheses:

• lim infk→∞ fk(x) ≥ f(x) for L1-a.e. x ∈ R.
• lim supk→∞

∫
R fk(x) dx ≤

∫
R f(x) dx.

Show that

lim
k→∞

∫
R
|fk(x)− f(x)| dx = 0.

Solution: Let f+ and f− denote the positive and negative part of a function f , respectively.
Arguing as in the proof of the Dominated Convergence Theorem, we have∫

R
lim inf
k→∞

(
f+ − (f − fk)

+
)
≤ lim inf

k→∞

∫
R
f+ − (f − fk)

+ (1)

by applying Fatou’s lemma to the functions f+−(f−fk)
+ which are nonnegative, since (f−fk)

+ =
max{0, f−fk} ≤ max{0, f} = f+. Since f+ is summable (because f is), by linearity we can subtract∫
R f+ on both sides of (1) and obtain∫

R
lim sup
k→∞

(f − fk)
+ ≥ lim sup

k→∞

∫
R
(f − fk)

+. (2)

However notice that lim infk→∞ fk−f ≥ 0, which implies that lim supk→∞ f−fk ≤ 0, and applying
(·)+ on both sides and using the monotonicity of the lim sup—i.e. the fact that if φ is an increasing
function then lim supk→∞ φ(ak) = φ (lim supk→∞ ak)—we get that lim supk→∞(f − fk)

+ ≤ 0. The
opposite inequality is trivial, so we actually have lim supk→∞(f − fk)

+ = 0. Inserting this into (2)
we find

lim sup
k→∞

∫
R
(f − fk)

+ = 0. (3)

On the other hand, observe that (f − fk)
+ − (f − fk)

− = f − fk. Hence

lim sup
k→∞

∫
R
(f−fk)

− = lim sup
k→∞

∫
R
(f−fk)

+−f+fk ≤ lim sup
k→∞

∫
R
(f−fk)

++lim sup
k→∞

∫
R
fk−f = 0 (4)
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by (3) and the second condition. Adding (3) and (4) and recalling that |f − fk| = (f − fk)
++(f −

fk)
−, we finally get

lim sup
k→∞

∫
R
|f − fk| ≤ lim sup

k→∞

∫
R
(f − fk)

+ + lim sup
k→∞

∫
R
(f − fk)

− = 0.

Exercise 10.5. ⋆
Let 0 < m < M < ∞ be two real numbers and let f : [0, 1] → R be a measurable function
satisfying m ≤ f(x) ≤ M for almost every x ∈ [0, 1]. Show that(∫

[0,1]

f(x) dx

)(∫
[0,1]

1

f(x)
dx

)
≤ (m+M)2

4mM

and characterize all functions for which equality holds.

Solution: Since f(x) satisfies the inequality m ≤ f(x) ≤ M pointwise almost everywhere, it holds
that

(f(x)−m)(M − f(x)) ≥ 0.

Expanding and dividing by f(x) > 0 we obtain

mM

f(x)
+ f(x) ≤ m+M. (5)

Integrating we obtain the inequality

mM

∫
[0,1]

1

f(x)
dx+

∫
[0,1]

f(x) dx ≤ m+M. (6)

By applying the arithmetic-geometric inequality on the left we get

2

(
mM

∫
[0,1]

1

f(x)
dx

∫
[0,1]

f(x) dx

)1/2

≤ mM

∫
[0,1]

1

f(x)
dx+

∫
[0,1]

f(x) dx ≤ m+M. (7)

Finally, squaring and rearranging we prove the desired inequality:∫
[0,1]

1

f(x)
dx ·

∫
[0,1]

f(x) dx ≤ (m+M)2

4mM
.

In order to have equality, we must have equality in the arithmetic-geometric inequality (7),

mM

∫
[0,1]

1

f(x)
dx =

∫
[0,1]

f(x) dx (8)
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and in (6). This implies that equality (5) holds almost everywhere, which means that f(x) ∈
{m,M} for almost every x ∈ [0, 1]. Letting A and B be the sets where f = m and f = M ,
respectively, by inserting into (8) we find

mM

(
λ

m
+

1− λ

M

)
= λm+ (1− λ)M,

where λ = L1(A) = 1 − L1(B). A simple computation then shows that λ = 1/2, so equality
holds when f ≡ m almost everywhere in a measurable set of half the measure and f ≡ M almost
everywhere in its complement.

Exercise 10.6.
For all n ∈ N, let fn : [0, 1] → R be defined by:

fn(x) =
n
√
x

1 + n2x2
.

Prove that:

(a) fn(x) ≤ 1√
x
on (0, 1] for all n ≥ 1.

Solution: We would like to show that n
√
x

1+n2x2 ≤ 1√
x
. This is equivalent to

nx ≤ 1 + n2x2 ⇔ (1− nx)2 + nx ≥ 0

which is true for all x ∈ [0, 1].

(b) lim
n→∞

∫ 1

0

fn(x)dx = 0.

Solution: Let us start with the following observation

n
√
x

1 + n2x2
≤ n

√
x

n2x2
≤ 1

nx
√
x
.

Therefore, it holds
lim
n→∞

fn(x) = 0

pointwise on (0, 1].

By (a), we know that the sequence fn is always smaller than g = 1√
x
. Since g is Lebesgue integrable

on [0, 1], we deduce by Lebegue’s dominated convergence theorem and the pointwise convergence
to 0 that:

lim
n→∞

∫ 1

0
fn(x)dx = 0.
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