Exercise 10.1. \&

Which of the following statements are true?
(a) Let $\left\{f_{k}\right\}$ be a sequence of nonnegative \mathcal{L}^{1}-measurable functions on \mathbb{R} converging uniformly to a function f. Then $\lim _{k \rightarrow \infty} \int_{\mathbb{R}} f_{k} d \mathcal{L}^{1}$ exists and

$$
\int_{\mathbb{R}} f d \mathcal{L}^{1} \leq \lim _{k \rightarrow \infty} \int_{\mathbb{R}} f_{k} d \mathcal{L}^{1}
$$

Solution: \boldsymbol{X} Even with uniform convergence the limit may not exist: consider for example $f_{k}(x)=$ $k^{-1} \chi_{[0, k]}(x)$ for k even and $f_{k} \equiv 0$ for k odd.
(b) Let $f_{k}:[0,1] \rightarrow[0,1]$ be \mathcal{L}^{1}-measurable functions for $k=1,2, \ldots$ and suppose that $f_{k} \rightarrow f$ almost everywhere. Then $\lim _{k \rightarrow \infty} \int_{[0,1]} f_{k} d \mathcal{L}^{1}$ exists and

$$
\int_{[0,1]} f d \mathcal{L}^{1} \leq \lim _{k \rightarrow \infty} \int_{[0,1]} f_{k} d \mathcal{L}^{1}
$$

Solution: \checkmark This is a consequence of the Dominated Convergence Theorem and actually equality always holds.
(c) Let f be \mathcal{L}^{1}-summable on \mathbb{R} and $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \cdots$ be \mathcal{L}^{1}-measurable subsets of \mathbb{R}. Then the limit $\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mathcal{L}^{1}$ exists.
Solution: \checkmark It exists and is equal to $\int_{\cup_{n \geq 1} E_{n}} f d \mathcal{L}^{1}$ by the Dominated Convergence Theorem.
(d) Let $\left\{f_{n}\right\}$ be a sequence of continuous Lebesgue-summable functions on $[0, \infty)$ which converges to a Lebesgue-summable function f. Then

$$
\lim _{n \rightarrow \infty} \int_{[0, \infty)}\left|f_{n}(x)-f(x)\right| \mathcal{L}^{1}(x)=0
$$

Solution: \boldsymbol{X} Take for example

$$
f_{n}(x)= \begin{cases}\frac{1}{n}-\frac{x}{n^{2}}, & x \in(0, n) \\ 0, & \text { otherwise }\end{cases}
$$

Exercise 10.2.

Let $f: \mathbb{R} \rightarrow[0,+\infty]$ be \mathcal{L}^{1}-measruable. Assume that for all $n \geq 1$,

$$
\int_{\mathbb{R}} \frac{n^{2}}{n^{2}+x^{2}}|f(x)| d \mathcal{L}^{1}(x) \leq 1
$$

Show that

$$
\int_{\mathbb{R}}|f| d \mathcal{L}^{1} \leq 1
$$

Solution: Observe that we can write the integrand as

$$
g_{n}(x):=\frac{n^{2}}{n^{2}+x^{2}}|f(x)|=\left(1-\frac{x^{2}}{n^{2}+x^{2}}\right)|f(x)|,
$$

which shows that for a fixed x it is monotonically increasing in n. Moreover the pointwise limit of $g_{n}(x)$ is clearly equal to $|f(x)|$ for every x. Therefore we may apply the Monotone Convergence Theorem and get

$$
\int_{\mathbb{R}}|f(x)| d \mathcal{L}^{1}(x)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} g_{n}(x) d \mathcal{L}^{1}(x)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \frac{n^{2}}{n^{2}+x^{2}}|f(x)| d \mathcal{L}^{1}(x) \leq 1
$$

Exercise 10.3.

Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{[0, n]}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x
$$

Solution: Notice that we can write the integrals as $\int_{[0, \infty)} f_{n} d x$, where

$$
f_{n}(x)=\left(1+\frac{x}{n}\right)^{n} e^{-2 x} \chi_{[0, n]}(x) .
$$

We claim that this sequence of functions is monotonically increasing: given n, it is clear that $f_{n}(x) \leq f_{n+1}(x)$ for $x>n$, so we may focus on the case $0 \leq x \leq n$ and forget about the characteristic function. We have to show that

$$
\left(1+\frac{x}{n}\right)^{n} \leq\left(1+\frac{x}{n+1}\right)^{n+1}
$$

Taking both sides to the power $1 / n$, this is equivalent to

$$
1+\frac{x}{n} \leq\left(1+\frac{x}{n+1}\right)^{\frac{n+1}{n}}
$$

Letting $y:=x /(n+1)$ and $\alpha:=\frac{n+1}{n}>1$, we can rewrite this inequality as

$$
1+\alpha y \leq(1+y)^{\alpha}
$$

which is well-known (it can be easily shown for example by applying the Mean Value Theorem to the function $t \mapsto(1+t)^{\alpha}$ between 0 and $\left.y\right)$.

Let us now compute the pointwise limit of the increasing sequence f_{n}. Again we can ignore the characteristic function because for every x it becomes eventually 1 .

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} e^{-2 x}=e^{x} \cdot e^{-2 x}=e^{-x}
$$

We can now conclude by applying the Monotone Convergence Theorem:

$$
\lim _{n \rightarrow \infty} \int_{[0, n]}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x=\lim _{n \rightarrow \infty} \int_{[0, \infty)} f_{n}(x) d x=\int_{[0, \infty)} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{[0, \infty)} e^{-x} d x=1
$$

Exercise 10.4.

Let f_{k}, f be \mathcal{L}^{1}-summable functions on \mathbb{R} which are nonnegative \mathcal{L}^{1}-almost everywhere and satisfy the following additional hypotheses:

- $\liminf _{k \rightarrow \infty} f_{k}(x) \geq f(x)$ for \mathcal{L}^{1}-a.e. $x \in \mathbb{R}$.
- $\lim \sup _{k \rightarrow \infty} \int_{\mathbb{R}} f_{k}(x) d x \leq \int_{\mathbb{R}} f(x) d x$.

Show that

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}}\left|f_{k}(x)-f(x)\right| d x=0
$$

Solution: Let f^{+}and f^{-}denote the positive and negative part of a function f, respectively. Arguing as in the proof of the Dominated Convergence Theorem, we have

$$
\begin{equation*}
\int_{\mathbb{R}} \liminf _{k \rightarrow \infty}\left(f^{+}-\left(f-f_{k}\right)^{+}\right) \leq \liminf _{k \rightarrow \infty} \int_{\mathbb{R}} f^{+}-\left(f-f_{k}\right)^{+} \tag{1}
\end{equation*}
$$

by applying Fatou's lemma to the functions $f^{+}-\left(f-f_{k}\right)^{+}$which are nonnegative, since $\left(f-f_{k}\right)^{+}=$ $\max \left\{0, f-f_{k}\right\} \leq \max \{0, f\}=f^{+}$. Since f^{+}is summable (because f is), by linearity we can subtract $\int_{\mathbb{R}} f^{+}$on both sides of (1) and obtain

$$
\begin{equation*}
\int_{\mathbb{R}} \limsup _{k \rightarrow \infty}\left(f-f_{k}\right)^{+} \geq \limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{+} . \tag{2}
\end{equation*}
$$

However notice that ${\lim \inf _{k \rightarrow \infty} f_{k}-f \geq 0 \text {, which implies that } \limsup _{k \rightarrow \infty} f-f_{k} \leq 0 \text {, and applying }}$ $(\cdot)^{+}$on both sides and using the monotonicity of the \lim sup-i.e. the fact that if φ is an increasing function then $\lim \sup _{k \rightarrow \infty} \varphi\left(a_{k}\right)=\varphi\left(\lim \sup _{k \rightarrow \infty} a_{k}\right)$-we get that $\limsup _{k \rightarrow \infty}\left(f-f_{k}\right)^{+} \leq 0$. The opposite inequality is trivial, so we actually have $\lim \sup _{k \rightarrow \infty}\left(f-f_{k}\right)^{+}=0$. Inserting this into (2) we find

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{+}=0 . \tag{3}
\end{equation*}
$$

On the other hand, observe that $\left(f-f_{k}\right)^{+}-\left(f-f_{k}\right)^{-}=f-f_{k}$. Hence

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{-}=\limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{+}-f+f_{k} \leq \limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{+}+\limsup _{k \rightarrow \infty} \int_{\mathbb{R}} f_{k}-f=0 \tag{4}
\end{equation*}
$$

by (3) and the second condition. Adding (3) and (4) and recalling that $\left|f-f_{k}\right|=\left(f-f_{k}\right)^{+}+(f-$ $\left.f_{k}\right)^{-}$, we finally get

$$
\limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left|f-f_{k}\right| \leq \limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{+}+\limsup _{k \rightarrow \infty} \int_{\mathbb{R}}\left(f-f_{k}\right)^{-}=0 .
$$

Exercise 10.5. \star

Let $0<m<M<\infty$ be two real numbers and let $f:[0,1] \rightarrow \mathbb{R}$ be a measurable function satisfying $m \leq f(x) \leq M$ for almost every $x \in[0,1]$. Show that

$$
\left(\int_{[0,1]} f(x) d x\right)\left(\int_{[0,1]} \frac{1}{f(x)} d x\right) \leq \frac{(m+M)^{2}}{4 m M}
$$

and characterize all functions for which equality holds.

Solution: Since $f(x)$ satisfies the inequality $m \leq f(x) \leq M$ pointwise almost everywhere, it holds that

$$
(f(x)-m)(M-f(x)) \geq 0 .
$$

Expanding and dividing by $f(x)>0$ we obtain

$$
\begin{equation*}
\frac{m M}{f(x)}+f(x) \leq m+M . \tag{5}
\end{equation*}
$$

Integrating we obtain the inequality

$$
\begin{equation*}
m M \int_{[0,1]} \frac{1}{f(x)} d x+\int_{[0,1]} f(x) d x \leq m+M \tag{6}
\end{equation*}
$$

By applying the arithmetic-geometric inequality on the left we get

$$
\begin{equation*}
2\left(m M \int_{[0,1]} \frac{1}{f(x)} d x \int_{[0,1]} f(x) d x\right)^{1 / 2} \leq m M \int_{[0,1]} \frac{1}{f(x)} d x+\int_{[0,1]} f(x) d x \leq m+M \tag{7}
\end{equation*}
$$

Finally, squaring and rearranging we prove the desired inequality:

$$
\int_{[0,1]} \frac{1}{f(x)} d x \cdot \int_{[0,1]} f(x) d x \leq \frac{(m+M)^{2}}{4 m M} .
$$

In order to have equality, we must have equality in the arithmetic-geometric inequality (7),

$$
\begin{equation*}
m M \int_{[0,1]} \frac{1}{f(x)} d x=\int_{[0,1]} f(x) d x \tag{8}
\end{equation*}
$$

and in (6). This implies that equality (5) holds almost everywhere, which means that $f(x) \in$ $\{m, M\}$ for almost every $x \in[0,1]$. Letting A and B be the sets where $f=m$ and $f=M$, respectively, by inserting into (8) we find

$$
m M\left(\frac{\lambda}{m}+\frac{1-\lambda}{M}\right)=\lambda m+(1-\lambda) M
$$

where $\lambda=\mathcal{L}^{1}(A)=1-\mathcal{L}^{1}(B)$. A simple computation then shows that $\lambda=1 / 2$, so equality holds when $f \equiv m$ almost everywhere in a measurable set of half the measure and $f \equiv M$ almost everywhere in its complement.

Exercise 10.6.

For all $n \in \mathbb{N}$, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by:

$$
f_{n}(x)=\frac{n \sqrt{x}}{1+n^{2} x^{2}} .
$$

Prove that:
(a) $f_{n}(x) \leq \frac{1}{\sqrt{x}}$ on $(0,1]$ for all $n \geq 1$.

Solution: We would like to show that $\frac{n \sqrt{x}}{1+n^{2} x^{2}} \leq \frac{1}{\sqrt{x}}$. This is equivalent to

$$
n x \leq 1+n^{2} x^{2} \Leftrightarrow(1-n x)^{2}+n x \geq 0
$$

which is true for all $x \in[0,1]$.
(b) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0$.

Solution: Let us start with the following observation

$$
\frac{n \sqrt{x}}{1+n^{2} x^{2}} \leq \frac{n \sqrt{x}}{n^{2} x^{2}} \leq \frac{1}{n x \sqrt{x}}
$$

Therefore, it holds

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

pointwise on $(0,1]$.
By (a), we know that the sequence f_{n} is always smaller than $g=\frac{1}{\sqrt{x}}$. Since g is Lebesgue integrable on $[0,1]$, we deduce by Lebegue's dominated convergence theorem and the pointwise convergence to 0 that:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

