Exercise 11.1.

(a) Let $\{f_k\}$ be a sequence of \mathcal{L}^1 -measurable functions on [0, 1] converging a.e. to a function f and such that $|f_k| \leq 100$ a.e. for each k. Is it true that

$$\lim_{k \to \infty} \int_{[0,1]} |f_k - f| \, dx = 0?$$

Solution: Yes: we can apply Dominated Convergence with the dominating function $g \equiv 100$. (b) Compute the limit

$$\lim_{k \to \infty} k \int_0^\infty e^{-kx} \sqrt{|\cos(x)|} \, dx.$$

Solution: Make the change of variables y = kx. Then the integral becomes

$$\int_0^\infty k e^{-kx} \sqrt{|\cos(x)|} \, dx = \int_0^\infty e^{-y} \sqrt{\left|\cos\left(\frac{y}{k}\right)\right|} \, dy.$$

The new integrands are all bounded below by $g(y) := e^{-y}$, which is summable, and therefore we may pass to the limit using Dominated Convergence. The pointwise limit is

$$\lim_{k \to \infty} e^{-y} \sqrt{\left| \cos\left(\frac{y}{k}\right) \right|} = e^{-y} \sqrt{\left| \cos(0) \right|} = e^{-y},$$

thus

$$\lim_{k \to \infty} \int_0^\infty k e^{-kx} \sqrt{\left|\cos(x)\right|} \, dx = \lim_{k \to \infty} \int_0^\infty e^{-y} \sqrt{\left|\cos\left(\frac{y}{k}\right)\right|} \, dy = \int_0^\infty e^{-y} \, dy = 1.$$

(c) What is the value of the limit

$$\lim_{k \to \infty} \int_0^\infty e^{-x^k} \, dx?$$

(A) 0. (B) 1. (C) ∞ . (D) None of the previous answers is correct.

Solution: The correct answer is (B). The sequence e^{-x^k} is monotonically increasing to 1 for $x \in (0, 1)$ and monotonically decreasing to 0 for x > 1. Therefore the function g defined as

$$g(x) := \begin{cases} 1, & \text{if } x \le 1\\ e^{-x}, & \text{if } x > 1 \end{cases}$$

dominates the sequence $\{e^{-x^k}\}$ and is summable. Passing to the limit,

$$\lim_{k \to \infty} \int_0^\infty e^{-x^k} \, dx = \int_0^\infty \lim_{k \to \infty} e^{-x^k} \, dx = \int_0^\infty \chi_{[0,1]}(x) \, dx = 1.$$

1 / 7

(d) Let $f: \Omega \to [0,1]$ be a μ -measurable function with $\int_{\Omega} f \, d\mu > 0$. Is it true that

$$\lim_{k \to \infty} \int_{\Omega} f^{1/k} \, d\mu > 0?$$

Solution: Yes: first notice that the set $E := \{x \in \Omega : f(x) > 0\}$ has $\mu(E) > 0$, since otherwise the integral of f would be zero. For each $x \in E$, $\lim_{k\to\infty} f(x)^{1/k} = 1$ and moreover this sequence is monotonically increasing. Thus we may pass to the limit using the Monotone Convergence Theorem:

$$\lim_{k\to\infty}\int_{\Omega}f^{1/k}\,d\mu=\int_{\Omega}\lim_{k\to\infty}f^{1/k}\,d\mu=\int_{E}\lim_{k\to\infty}f^{1/k}\,d\mu=\int_{E}1\,d\mu=\mu(E)>0.$$

Exercise 11.2.

Compute the limit

$$\lim_{n \to \infty} \int_{a}^{+\infty} \frac{n}{1 + n^2 x^2} \, dx$$

for every $a \in \mathbb{R}$.

Hint: recall that $\arctan x$ is a primitive of $\frac{1}{1+x^2}$.

Solution: Observe that $\frac{n}{1+n^2x^2} \leq \frac{1}{nx^2} \leq \frac{1}{x^2}$ for x > 0. If a > 0, then since the function $\frac{1}{x^2}$ is integrable on $(a, +\infty)$, we may apply Lebesgue's dominated convergence theorem and deduce that

$$\lim_{n \to \infty} \int_{a}^{+\infty} \frac{n}{1 + n^{2} x^{2}} \, dx = \int_{a}^{+\infty} \lim_{n \to \infty} \frac{n}{1 + n^{2} x^{2}} \, dx = \int_{a}^{+\infty} 0 \, dx = 0.$$

For a = 0 we can use the change of variables y = nx and see that the integral is actually independent of n:

$$\int_0^{+\infty} \frac{n}{1+n^2 x^2} \, dx = \int_0^{+\infty} \frac{1}{1+y^2} \, dy = \arctan y \Big|_0^{+\infty} = \arctan(+\infty) - \arctan(0) = \frac{\pi}{2}.$$

Finally for a < 0 we get, by using the fact that the integrand is even:

$$\int_{a}^{+\infty} \frac{n}{1+n^{2}x^{2}} dx = \int_{-\infty}^{+\infty} \frac{n}{1+n^{2}x^{2}} dx - \int_{-\infty}^{a} \frac{n}{1+n^{2}x^{2}} dx$$
$$= 2 \int_{0}^{+\infty} \frac{n}{1+n^{2}x^{2}} dx - \int_{-a}^{+\infty} \frac{n}{1+n^{2}x^{2}} dx.$$

Thus using the two previous cases we deduce that the limit is π .

Exercise 11.3.

Let μ be a Radon measure on \mathbb{R}^n , $\Omega \subset \mathbb{R}^n$ be μ -measurable and $f: \Omega \to [0, +\infty]$ be μ summable. For all μ -measurable subsets $A \subset \Omega$ define (see Section 3.5 in the Lecture Notes)

$$\nu(A) = \int_A f d\mu.$$

(a) Prove that ν is a pre-measure on the σ -algebra of μ -measurable sets, hence we can define its Carathéodory-Hahn extension $\nu: \mathcal{P}(\Omega) \to [0, +\infty]$.

Solution: Obviously we have that $\nu(\emptyset) = 0$. Now consider a family $\{A_k\}_{k \in \mathbb{N}}$ of pairwise disjoint μ -measurable sets with $A = \bigcup_{k \in \mathbb{N}} A_k$. For all $k \in \mathbb{N}$, consider the function $f_k \colon \Omega \to [0, +\infty]$ defined as $f_k = f(\chi_{A_0} + \chi_{A_1} + \ldots + \chi_{A_k})$. Note that $f_k \leq f_{k+1}$ for all $k \in \mathbb{N}$ and $f_k \xrightarrow{k \to \infty} f\chi_A$ pointwise. Hence by Beppo Levi's Theorem we get

$$\begin{split} \nu(A) &= \int_A f d\mu = \int_\Omega f \chi_A d\mu = \int_\Omega \lim_{k \to \infty} f_k \ d\mu = \lim_{k \to \infty} \int_\Omega f_k d\mu \\ &= \lim_{k \to \infty} \sum_{i=0}^k \int_\Omega f \chi_{A_i} d\mu = \lim_{k \to \infty} \sum_{i=0}^k \int_{A_i} f d\mu = \sum_{k \in \mathbb{N}} \nu(A_k), \end{split}$$

where we used Theorem 3.1.15 and Lemma 3.1.17 of the Lecture Notes. Hence we proved that ν is a pre-measure and therefore can be extended to a measure $\nu : \mathcal{P}(\Omega) \to [0, +\infty]$. Moreover the σ -algebra Σ_{ν} of ν -measurable sets contains the σ -algebra Σ_{μ} of μ -measurable sets.

(b) Show that ν is a Radon measure.

Solution: First note that ν is a Borel measure since μ is a Borel measure and $\Sigma_{\nu} \supset \Sigma_{\mu}$.

Now let us prove that ν is Borel regular. First consider any μ -measurable subset $A \subseteq \Omega$. Since μ is Borel regular, there exists a Borel set $B \supseteq A$ such that $\mu(A) = \mu(B)$. We can also suppose that $\mu(B \setminus A) = 0$, for example by obtaining first $B_i \supseteq A \cap Q_i$, where $\{Q_i\}$ is the standard partition of \mathbb{R}^n into unit cubes, and then setting $B = \bigcup_i B_i$. Hence it holds

$$\nu(A) = \int_A f d\mu = \int_B f d\mu - \int_{B \setminus A} f d\mu = \int_B f d\mu = \nu(B),$$

where we used that $\mu(B \setminus A) = 0$ and Corollary 3.1.18. Now let $A \subset \Omega$ be any set. By definition of Carathéodory-Hahn extension, there exist μ -measurable sets $A_k \supset A$ such that $\nu(A) = \lim_{k \to \infty} \nu(A_k)$. For what we proved just above, there exist Borel sets $B_k \supset A_k \supset A$ such that $\nu(B_k) = \nu(A_k)$. Then define the Borel set $B = \bigcap_{k \in \mathbb{N}} B_k$, for which it easily holds $\nu(B) = \nu(A)$. This proves that ν is Borel regular.

Let $K \subset \Omega$ be any compact set, then

$$\nu(K) = \int_K f d\mu < +\infty,$$

where we used that f is μ -summable. This concludes the proof that ν is a Radon measure. \Box (c) Prove that $\Sigma_{\nu} \supseteq \Sigma_{\mu}$ and that ν is absolutely continuous with respect to μ , that is, if $\mu(A) = 0$ then $\nu(A) = 0$. **Solution:** We have already observed that $\Sigma_{\nu} \supset \Sigma_{\mu}$. Moreover, if $\mu(A) = 0$ for a subset $A \subset \Omega$, then $\nu(A) = 0$ by Corollary 3.1.18. This proves that ν is absolutely continuous with respect to μ .

Exercise 11.4.

Prove the following assertions.

(a) Let $f: [a, +\infty) \to \mathbb{R}$ be a locally bounded function and locally Riemann integrable. Then f is \mathcal{L}^1 -summable if and only if f is absolutely Riemann integrable in the generalized sense (namely $\mathcal{R} \int_a^\infty |f(x)| dx = \lim_{j \to \infty} \mathcal{R} \int_a^j |f(x)| dx$ exists and it is finite) and in this case

$$\int_{[a,+\infty)} f(x) d\mathcal{L}^1 = \mathcal{R} \int_a^\infty f(x) dx = \lim_{j \to +\infty} \mathcal{R} \int_a^j f(x) dx.$$

Solution: See proof of Exercise 3.6.7 (2) in the Lecture Notes.

(b) Let $f: [0, +\infty) \to \mathbb{R}$ be the function $f(x) = \frac{\sin x}{x}$, which is locally bounded and locally Riemann integrable. Show that f is Riemann integrable, i.e. $\mathcal{R} \int_0^\infty f(x) dx < +\infty$ but not absolutely Riemann integrable, i.e. $\mathcal{R} \int_0^\infty |f(x)| dx = \infty$. Hence f is not \mathcal{L}^1 -summable.

Solution: In what follows we write \int for the Riemann integral $\mathcal{R} \int$. We have that

$$\int_{0}^{j} \frac{\sin x}{x} dx = \int_{0}^{1} \frac{\sin x}{x} dx + \int_{1}^{j} \frac{\sin x}{x} dx = \int_{0}^{1} \frac{\sin x}{x} dx + \left[-\frac{\cos x}{x}\right]_{1}^{j} - \int_{1}^{j} \frac{\cos x}{x^{2}} dx.$$

Now note that $\int_0^1 \frac{\sin x}{x} dx < +\infty$, $\left[-\frac{\cos x}{x}\right]_1^j = \cos 1 - \cos j/j$ and

$$\left| \int_{1}^{j} \frac{\cos x}{x^{2}} dx \right| \leq \int_{1}^{j} \frac{|\cos x|}{x^{2}} dx \leq \int_{1}^{j} \frac{1}{x^{2}} dx = 1 - \frac{1}{j}.$$

Hence $\lim_{j\to\infty} \int_0^j \frac{\sin x}{x} dx$ exists and is finite. On the other hand we have that

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx \ge \sum_{k \in \mathbb{N}} \int_{\pi k}^{\pi (k+1)} \left| \frac{\sin x}{x} \right| dx \ge \sum_{k \in \mathbb{N}} \frac{1}{k+1} \cdot \frac{1}{2} \cdot \frac{\pi}{3} = +\infty.$$

Exercise 11.5.

This exercise is a more general version of Theorem 3.4.1 from the lecture notes.

(a) Let μ be a Radon measure on \mathbb{R}^n and let $\Omega \subset \mathbb{R}^n$ be a μ -measurable subset. Consider a function $f: \Omega \times (a, b) \to \mathbb{R}$, for some interval $(a, b) \subset \mathbb{R}$, such that:

- the map $x \mapsto f(x, y)$ is μ -summable for all $y \in (a, b)$;
- the map $y \mapsto f(x, y)$ is differentiable in (a, b) for every $x \in \Omega$;

• there is a μ -summable function $g: \Omega \to [0, \infty]$ such that $\sup_{a < y < b} \left| \frac{\partial f}{\partial y}(x, y) \right| \le g(x)$ for all $x \in \Omega$.

Then $y \mapsto \int_{\Omega} f(x,y) d\mu(x)$ is differentiable in (a,b) with

$$\frac{d}{dy}\left(\int_{\Omega}f(x,y)d\mu(x)\right) = \int_{\Omega}\frac{\partial f}{\partial y}(x,y)d\mu(x)$$

for all $y \in (a, b)$.

Solution: Fix $y \in (a, b)$, let $\{h_k\}_{k \in \mathbb{N}}$ be a sequence of real numbers converging to 0 and consider the μ -summable function

$$g_k(x) = \frac{f(x, y+h_k) - f(x, y)}{h_k}$$

for all k large enough so that $y + h_k \in (a, b)$. Note that $g_k(x) \to \frac{\partial f}{\partial y}(x, y)$ pointwise as $k \to \infty$. Moreover, by the mean value theorem, we have that

$$|g_k(x)| \le \sup_{a < y' < b} \left| \frac{\partial f}{\partial y}(x, y') \right| \le g(x).$$

We also have that $\frac{\partial f}{\partial y}(\cdot, y)$ is μ -measurable, since it is the pointwise limit of μ -measurable functions. Thus we can apply the Dominated Convergence Theorem, obtaining that $\frac{\partial f}{\partial y}(\cdot, y)$ is μ -summable and

$$\begin{split} \int_{\Omega} \frac{\partial f}{\partial y}(x,y) d\mu(x) &= \lim_{k \to \infty} \int_{\Omega} g_k(x) d\mu(x) = \lim_{k \to \infty} \frac{\int_{\Omega} f(x,y+h_k) d\mu(x) - \int_{\Omega} f(x,y) d\mu(x)}{h_k} \\ &= \frac{d}{dy} \int_{\Omega} f(x,y) d\mu(x), \end{split}$$

which concludes the proof.

(b) \bigstar Compute the integral

$$\phi(y) := \int_{(0,\infty)} e^{-x^2 - y^2/x^2} d\mathcal{L}^1(x)$$

for all y > 0.

Hint: use part (a) to obtain that ϕ solves the Cauchy problem

$$\begin{cases} \phi'(y) = -2\phi(y) & \text{for } y > 0\\ \lim_{y \to 0^+} \phi(y) = \sqrt{\pi}/2. \end{cases}$$

Solution: First note that $e^{-x^2-y^2/x^2} \le e^{-x^2}$ is \mathcal{L}^1 -summable for all y > 0 and $y \mapsto e^{-x^2-y^2/x^2}$ is differentiable in $(0, +\infty)$ for all x > 0. Moreover, for all x, y > 0, we have that

$$\left|\frac{\partial}{\partial y}e^{-x^2-y^2/x^2}\right| = \frac{2y}{x^2}e^{-x^2-y^2/x^2} \le \frac{2e^{-x^2}}{y} \cdot \frac{y^2}{x^2}e^{-y^2/x^2} \le \frac{2e^{-x^2}}{y}e^{-1}.$$

Hence $\frac{\partial}{\partial y}e^{-x^2-y^2/x^2}$ is controlled by the \mathcal{L}^1 -summable function e^{-x^2}/r for all y > r. Therefore we can apply part (a) and obtain that

$$\begin{split} \phi'(y) &= -\int_{(0,\infty)} \frac{2y}{x^2} e^{-x^2 - y^2/x^2} d\mathcal{L}^1(x) \stackrel{t=y/x}{=} -2 \int_{(0,\infty)} y \frac{t^2}{y^2} e^{-t^2 - y^2/t^2} \frac{y}{t^2} d\mathcal{L}^1(t) \\ &= -2 \int_{(0,\infty)} e^{-t^2 - y^2/t^2} d\mathcal{L}^1(t) = -2\phi(y). \end{split}$$

Since $\int_0^\infty e^{-x^2} d\mathcal{L}^1(x) = \sqrt{\pi}/2$, ϕ satisfies the Cauchy problem

$$\begin{cases} \phi'(y) = -2\phi(y) & \text{for } y > 0\\ \lim_{y \to 0^+} \phi(y) = \sqrt{\pi}/2, \end{cases}$$

which has solution $\phi(y) = \sqrt{\pi}e^{-y}/2$.

Exercise 11.6.

Let μ be a Radon measure on \mathbb{R}^n , $\Omega \subset \mathbb{R}^n$ a μ -measurable set with $\mu(\Omega) < +\infty$ and $f, f_k : \Omega \to \overline{\mathbb{R}} \mu$ -summable functions.

(a) Show that Vitali's Theorem implies Dominated Convergence Theorem.

Solution: Let $g: \Omega \to [0, \infty]$ be μ -summable and consider $|f_k| \leq g$ and $f_k \to f$ μ -almost everywhere, where $f, f_k: \Omega \to \overline{\mathbb{R}}$ are μ -measurable functions, for $k \in \mathbb{N}$.

Since $\mu(\Omega) < +\infty$, we have the convergence $f_k \xrightarrow{\mu} f$ (see Theorem 2.4.2 in the Lecture Notes). In addition, the f_k 's are uniformly μ -summable. This is due to the monotonicity of the integral for $|f_k| \leq g$ and the absolute continuity of the integral of g (see theorem below). As a result, the conditions of Vitali's theorem are satisfied and it follows that $\lim_{k\to\infty} \int_{\Omega} |f_k - f| d\mu = 0$.

Let us conclude by proving the absolute continuity of the integral of g (since in the lecture we used the Dominated Convergence Theorem), namely:

Theorem. Let $g: \Omega \to \overline{\mathbb{R}}$ be μ -summable. Then for every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for all μ -measurable subsets $A \subset \Omega$ with $\mu(A) < \delta$, it holds $\int_A |g| d\mu < \varepsilon$.

Proof. Without loss of generality, assume that $g \ge 0$ and define $g_n := \min\{g, n\}$. Then g_n converges pointwise to $g \mu$ -a.e. and by monotone convergence we have $\lim_{n\to\infty} \int_{\Omega} g_n d\mu = \int_{\Omega} g d\mu$, in particular $\lim_{n\to\infty} \int_{\Omega} |g - g_n| d\mu = 0$.

Now let $\varepsilon > 0$, then there exists an $N \in \mathbb{N}$ such that $\int_{\Omega} |g - g_N| d\mu < \varepsilon/2$. Hence, choosing $\delta = \varepsilon/(2N)$, we deduce for all measurable subsets $A \subset \Omega$ with $\mu(A) < \delta$ that

$$\int_{A} |g| d\mu \leq \int_{A} |g - g_N| d\mu + \int_{A} |g_N| d\mu < \int_{\Omega} |g - g_N| d\mu + \mu(A)N < \varepsilon.$$

This indeed proves the absolute continuity of the integral.

(b) Let $\Omega = [0, 1]$ and $\mu = \mathcal{L}^1$. Give an example in which Vitali's Theorem can be applied but Dominated Convergence Theorem cannot, i.e., a dominating function does not exist. **Hint:** look at the functions $f_n^k(x) = \frac{1}{x} \chi_{[\frac{n+k-1}{n2^{n+1}}, \frac{n+k}{n2^{n+1}}]}(x)$ for $n \in \mathbb{N}$, $1 \le k \le n$.

Solution: For $n \in \mathbb{N}$, $1 \leq k \leq n$, consider the function $f_n^k(x) = \frac{1}{x}\chi_{[\frac{n+k-1}{n2^{n+1}},\frac{n+k}{n2^{n+1}}]}(x)$. The sequence $\{f_n^k\}$ is uniformly μ -summable. Indeed, given $\varepsilon > 0$, choose $M \in \mathbb{N}$ with $1/M \leq \varepsilon$ and $\delta := 2^{-(M+1)}/M$, then for all $A \subset [0, 1]$ with $\mu(A) < \delta$ we have:

• if $n \ge M$ and $1 \le k \le n$, then

$$\int_{A} |f_{n}^{k}(x)| dx \leq \int_{0}^{1} |f_{n}^{k}(x)| dx \leq 2^{n+1} \cdot \frac{1}{n2^{n+1}} = \frac{1}{n} \leq \frac{1}{M} \leq \varepsilon;$$

• if n < M and $1 \le k \le n$, then

$$\int_{A} |f_{n}^{k}(x)| dx \leq 2^{n+1} \delta = \frac{2^{n+1}}{M 2^{M+1}} < \frac{1}{M} \leq \varepsilon.$$

Furthermore, $f_n^k \to 0$ converges pointwise and, as a result, converges in measure. Hence (f_n^k) satisfies the conditions of Vitali's theorem. However, a dominating function would have to be larger than 1/x, which implies non-summability over [0,1].