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Exercise 11.1. ♣
(a) Let {fk} be a sequence of L1-measurable functions on [0, 1] converging a.e. to a function
f and such that |fk| ≤ 100 a.e. for each k. Is it true that

lim
k→∞

∫
[0,1]

|fk − f | dx = 0?

Solution: Yes: we can apply Dominated Convergence with the dominating function g ≡ 100.

(b) Compute the limit

lim
k→∞

k

∫ ∞

0

e−kx
√

| cos(x)| dx.

Solution: Make the change of variables y = kx. Then the integral becomes∫ ∞

0
ke−kx

√
| cos(x)| dx =

∫ ∞

0
e−y

√∣∣∣cos(y
k

)∣∣∣ dy.
The new integrands are all bounded below by g(y) := e−y, which is summable, and therefore we
may pass to the limit using Dominated Convergence. The pointwise limit is

lim
k→∞

e−y

√∣∣∣cos(y
k

)∣∣∣ = e−y
√

|cos(0)| = e−y,

thus

lim
k→∞

∫ ∞

0
ke−kx

√
|cos(x)| dx = lim

k→∞

∫ ∞

0
e−y

√∣∣∣cos(y
k

)∣∣∣ dy =

∫ ∞

0
e−y dy = 1.

(c) What is the value of the limit

lim
k→∞

∫ ∞

0

e−xk

dx?

(A) 0. (B) 1. (C) ∞. (D) None of the previous answers is correct.

Solution: The correct answer is (B). The sequence e−xk
is monotonically increasing to 1 for x ∈

(0, 1) and monotonically decreasing to 0 for x > 1. Therefore the function g defined as

g(x) :=

{
1, if x ≤ 1

e−x, if x > 1

dominates the sequence {e−xk} and is summable. Passing to the limit,

lim
k→∞

∫ ∞

0
e−xk

dx =

∫ ∞

0
lim
k→∞

e−xk
dx =

∫ ∞

0
χ[0,1](x) dx = 1.
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(d) Let f : Ω → [0, 1] be a µ-measurable function with
∫
Ω
f dµ > 0. Is it true that

lim
k→∞

∫
Ω

f 1/k dµ > 0?

Solution: Yes: first notice that the set E := {x ∈ Ω : f(x) > 0} has µ(E) > 0, since otherwise
the integral of f would be zero. For each x ∈ E, limk→∞ f(x)1/k = 1 and moreover this sequence
is monotonically increasing. Thus we may pass to the limit using the Monotone Convergence
Theorem:

lim
k→∞

∫
Ω
f1/k dµ =

∫
Ω

lim
k→∞

f1/k dµ =

∫
E

lim
k→∞

f1/k dµ =

∫
E
1 dµ = µ(E) > 0.

Exercise 11.2.
Compute the limit

lim
n→∞

∫ +∞

a

n

1 + n2x2
dx

for every a ∈ R.
Hint: recall that arctan x is a primitive of 1

1+x2 .

Solution: Observe that n
1+n2x2 ≤ 1

nx2 ≤ 1
x2 for x > 0. If a > 0, then since the function 1

x2 is
integrable on (a,+∞), we may apply Lebesgue’s dominated convergence theorem and deduce that

lim
n→∞

∫ +∞

a

n

1 + n2x2
dx =

∫ +∞

a
lim
n→∞

n

1 + n2x2
dx =

∫ +∞

a
0 dx = 0.

For a = 0 we can use the change of variables y = nx and see that the integral is actually independent
of n: ∫ +∞

0

n

1 + n2x2
dx =

∫ +∞

0

1

1 + y2
dy = arctan y

∣∣+∞
0

= arctan(+∞)− arctan(0) =
π

2
.

Finally for a < 0 we get, by using the fact that the integrand is even:∫ +∞

a

n

1 + n2x2
dx =

∫ +∞

−∞

n

1 + n2x2
dx−

∫ a

−∞

n

1 + n2x2
dx

= 2

∫ +∞

0

n

1 + n2x2
dx−

∫ +∞

−a

n

1 + n2x2
dx.

Thus using the two previous cases we deduce that the limit is π.
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Exercise 11.3.
Let µ be a Radon measure on Rn, Ω ⊂ Rn be µ-measurable and f : Ω → [0,+∞] be µ-
summable. For all µ-measurable subsets A ⊂ Ω define (see Section 3.5 in the Lecture Notes)

ν(A) =

∫
A

fdµ.

(a) Prove that ν is a pre-measure on the σ-algebra of µ-measurable sets, hence we can define
its Carathéodory-Hahn extension ν : P(Ω) → [0,+∞].

Solution: Obviously we have that ν(∅) = 0. Now consider a family {Ak}k∈N of pairwise disjoint
µ-measurable sets with A =

⋃
k∈NAk. For all k ∈ N, consider the function fk : Ω → [0,+∞] defined

as fk = f(χA0 + χA1 + . . .+ χAk
). Note that fk ≤ fk+1 for all k ∈ N and fk

k→∞−−−→ fχA pointwise.
Hence by Beppo Levi’s Theorem we get

ν(A) =

∫
A
fdµ =

∫
Ω
fχAdµ =

∫
Ω

lim
k→∞

fk dµ = lim
k→∞

∫
Ω
fkdµ

= lim
k→∞

k∑
i=0

∫
Ω
fχAidµ = lim

k→∞

k∑
i=0

∫
Ai

fdµ =
∑
k∈N

ν(Ak),

where we used Theorem 3.1.15 and Lemma 3.1.17 of the Lecture Notes. Hence we proved that ν
is a pre-measure and therefore can be extended to a measure ν : P(Ω) → [0,+∞]. Moreover the
σ-algebra Σν of ν-measurable sets contains the σ-algebra Σµ of µ-measurable sets.

(b) Show that ν is a Radon measure.

Solution: First note that ν is a Borel measure since µ is a Borel measure and Σν ⊃ Σµ.

Now let us prove that ν is Borel regular. First consider any µ-measurable subset A ⊆ Ω. Since µ
is Borel regular, there exists a Borel set B ⊇ A such that µ(A) = µ(B). We can also suppose that
µ(B \A) = 0, for example by obtaining first Bi ⊇ A ∩Qi, where {Qi} is the standard partition of
Rn into unit cubes, and then setting B =

⋃
iBi. Hence it holds

ν(A) =

∫
A
fdµ =

∫
B
fdµ−

∫
B\A

fdµ =

∫
B
fdµ = ν(B),

where we used that µ(B \ A) = 0 and Corollary 3.1.18. Now let A ⊂ Ω be any set. By
definition of Carathéodory-Hahn extension, there exist µ-measurable sets Ak ⊃ A such that
ν(A) = limk→∞ ν(Ak). For what we proved just above, there exist Borel sets Bk ⊃ Ak ⊃ A
such that ν(Bk) = ν(Ak). Then define the Borel set B =

⋂
k∈NBk, for which it easily holds

ν(B) = ν(A). This proves that ν is Borel regular.

Let K ⊂ Ω be any compact set, then

ν(K) =

∫
K
fdµ < +∞,

where we used that f is µ-summable. This concludes the proof that ν is a Radon measure.

(c) Prove that Σν ⊇ Σµ and that ν is absolutely continuous with respect to µ, that is, if
µ(A) = 0 then ν(A) = 0.
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Solution: We have already observed that Σν ⊃ Σµ. Moreover, if µ(A) = 0 for a subset A ⊂ Ω,
then ν(A) = 0 by Corollary 3.1.18. This proves that ν is absolutely continuous with respect to
µ.

Exercise 11.4.
Prove the following assertions.

(a) Let f : [a,+∞) → R be a locally bounded function and locally Riemann integrable. Then
f is L1-summable if and only if f is absolutely Riemann integrable in the generalized sense
(namely R

∫∞
a
|f(x)|dx = limj→∞R

∫ j

a
|f(x)|dx exists and it is finite) and in this case∫

[a,+∞)

f(x)dL1 = R
∫ ∞

a

f(x)dx = lim
j→+∞

R
∫ j

a

f(x)dx.

Solution: See proof of Exercise 3.6.7 (2) in the Lecture Notes.

(b) Let f : [0,+∞) → R be the function f(x) = sinx
x
, which is locally bounded and locally

Riemann integrable. Show that f is Riemann integrable, i.e. R
∫∞
0

f(x)dx < +∞ but not

absolutely Riemann integrable, i.e. R
∫∞
0
|f(x)|dx = ∞. Hence f is not L1-summable.

Solution: In what follows we write
∫
for the Riemann integral R

∫
. We have that∫ j

0

sinx

x
dx =

∫ 1

0

sinx

x
dx+

∫ j

1

sinx

x
dx =

∫ 1

0

sinx

x
dx+

[
−cosx

x

]j
1
−
∫ j

1

cosx

x2
dx.

Now note that
∫ 1
0

sinx
x dx < +∞,

[
− cosx

x

]j
1
= cos 1− cos j/j and∣∣∣∣∫ j

1

cosx

x2
dx

∣∣∣∣ ≤ ∫ j

1

|cosx|
x2

dx ≤
∫ j

1

1

x2
dx = 1− 1

j
.

Hence limj→∞
∫ j
0

sinx
x dx exists and is finite. On the other hand we have that∫ ∞

0

∣∣∣∣sinxx
∣∣∣∣ dx ≥

∑
k∈N

∫ π(k+1)

πk

∣∣∣∣sinxx
∣∣∣∣ dx ≥

∑
k∈N

1

k + 1
· 1
2
· π
3
= +∞.

Exercise 11.5.
This exercise is a more general version of Theorem 3.4.1 from the lecture notes.

(a) Let µ be a Radon measure on Rn and let Ω ⊂ Rn be a µ-measurable subset. Consider a
function f : Ω× (a, b) → R, for some interval (a, b) ⊂ R, such that:

• the map x 7→ f(x, y) is µ-summable for all y ∈ (a, b);

• the map y 7→ f(x, y) is differentiable in (a, b) for every x ∈ Ω;
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• there is a µ-summable function g : Ω → [0,∞] such that supa<y<b|∂f∂y (x, y)| ≤ g(x) for
all x ∈ Ω.

Then y 7→
∫
Ω
f(x, y)dµ(x) is differentiable in (a, b) with

d

dy

(∫
Ω

f(x, y)dµ(x)

)
=

∫
Ω

∂f

∂y
(x, y)dµ(x)

for all y ∈ (a, b).

Solution: Fix y ∈ (a, b), let {hk}k∈N be a sequence of real numbers converging to 0 and consider
the µ-summable function

gk(x) =
f(x, y + hk)− f(x, y)

hk

for all k large enough so that y + hk ∈ (a, b). Note that gk(x) → ∂f
∂y (x, y) pointwise as k → ∞.

Moreover, by the mean value theorem, we have that

|gk(x)| ≤ sup
a<y′<b

∣∣∣∣∂f∂y (x, y′)
∣∣∣∣ ≤ g(x).

We also have that ∂f
∂y (·, y) is µ-measurable, since it is the pointwise limit of µ-measurable functions.

Thus we can apply the Dominated Convergence Theorem, obtaining that ∂f
∂y (·, y) is µ-summable

and ∫
Ω

∂f

∂y
(x, y)dµ(x) = lim

k→∞

∫
Ω
gk(x)dµ(x) = lim

k→∞

∫
Ω f(x, y + hk)dµ(x)−

∫
Ω f(x, y)dµ(x)

hk

=
d

dy

∫
Ω
f(x, y)dµ(x),

which concludes the proof.

(b) ⋆ Compute the integral

ϕ(y) :=

∫
(0,∞)

e−x2−y2/x2

dL1(x)

for all y > 0.

Hint: use part (a) to obtain that ϕ solves the Cauchy problem{
ϕ′(y) = −2ϕ(y) for y > 0

limy→0+ ϕ(y) =
√
π/2.

Solution: First note that e−x2−y2/x2 ≤ e−x2
is L1-summable for all y > 0 and y 7→ e−x2−y2/x2

is
differentiable in (0,+∞) for all x > 0. Moreover, for all x, y > 0, we have that∣∣∣∣ ∂∂ye−x2−y2/x2

∣∣∣∣ = 2y

x2
e−x2−y2/x2 ≤ 2e−x2

y
· y

2

x2
e−y2/x2 ≤ 2e−x2

y
e−1.
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Hence ∂
∂ye

−x2−y2/x2
is controlled by the L1-summable function e−x2

/r for all y > r. Therefore we
can apply part (a) and obtain that

ϕ′(y) = −
∫
(0,∞)

2y

x2
e−x2−y2/x2

dL1(x)
t=y/x
= −2

∫
(0,∞)

y
t2

y2
e−t2−y2/t2 y

t2
dL1(t)

= −2

∫
(0,∞)

e−t2−y2/t2dL1(t) = −2ϕ(y).

Since
∫∞
0 e−x2

dL1(x) =
√
π/2, ϕ satisfies the Cauchy problem{

ϕ′(y) = −2ϕ(y) for y > 0

limy→0+ ϕ(y) =
√
π/2,

which has solution ϕ(y) =
√
πe−y/2.

Exercise 11.6.
Let µ be a Radon measure on Rn, Ω ⊂ Rn a µ-measurable set with µ(Ω) < +∞ and
f, fk : Ω → R µ-summable functions.

(a) Show that Vitali’s Theorem implies Dominated Convergence Theorem.

Solution: Let g : Ω → [0,∞] be µ-summable and consider |fk| ≤ g and fk → f µ-almost every-
where, where f, fk : Ω → R are µ-measurable functions, for k ∈ N.
Since µ(Ω) < +∞, we have the convergence fk

µ−→ f (see Theorem 2.4.2 in the Lecture Notes).
In addition, the fk’s are uniformly µ-summable. This is due to the monotonicity of the integral
for |fk| ≤ g and the absolute continuity of the integral of g (see theorem below). As a result, the
conditions of Vitali’s theorem are satisfied and it follows that limk→∞

∫
Ω|fk − f |dµ = 0.

Let us conclude by proving the absolute continuity of the integral of g (since in the lecture we used
the Dominated Convergence Theorem), namely:

Theorem. Let g : Ω → R be µ-summable. Then for every ε > 0 there exists a δ > 0 such that, for
all µ-measurable subsets A ⊂ Ω with µ(A) < δ, it holds

∫
A|g|dµ < ε.

Proof. Without loss of generality, assume that g ≥ 0 and define gn := min{g, n}. Then gn converges
pointwise to g µ-a.e. and by monotone convergence we have limn→∞

∫
Ω gndµ =

∫
Ω gdµ, in particular

limn→∞
∫
Ω|g − gn|dµ = 0.

Now let ε > 0, then there exists an N ∈ N such that
∫
Ω|g − gN |dµ < ε/2. Hence, choosing

δ = ε/(2N), we deduce for all measurable subsets A ⊂ Ω with µ(A) < δ that∫
A
|g|dµ ≤

∫
A
|g − gN |dµ+

∫
A
|gN |dµ <

∫
Ω
|g − gN |dµ+ µ(A)N < ε.

This indeed proves the absolute continuity of the integral.

(b) Let Ω = [0, 1] and µ = L1. Give an example in which Vitali’s Theorem can be applied
but Dominated Convergence Theorem cannot, i.e., a dominating function does not exist.

Hint: look at the functions fk
n(x) =

1
x
χ[n+k−1

n2n+1 , n+k

n2n+1 )
(x) for n ∈ N, 1 ≤ k ≤ n.
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Solution: For n ∈ N, 1 ≤ k ≤ n, consider the function fk
n(x) =

1
xχ[n+k−1

n2n+1 , n+k

n2n+1 )
(x).

The sequence {fk
n} is uniformly µ-summable. Indeed, given ε > 0, choose M ∈ N with 1/M ≤ ε

and δ := 2−(M+1)/M , then for all A ⊂ [0, 1] with µ(A) < δ we have:

• if n ≥ M and 1 ≤ k ≤ n, then∫
A
|fk

n(x)|dx ≤
∫ 1

0
|fk

n(x)|dx ≤ 2n+1 · 1

n2n+1
=

1

n
≤ 1

M
≤ ε;

• if n < M and 1 ≤ k ≤ n, then∫
A
|fk

n(x)|dx ≤ 2n+1δ =
2n+1

M2M+1
<

1

M
≤ ε.

Furthermore, fk
n → 0 converges pointwise and, as a result, converges in measure. Hence (fk

n)
satisfies the conditions of Vitali’s theorem. However, a dominating function would have to be
larger than 1/x, which implies non-summability over [0, 1].
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