Exercise 12.1.

(a) The value of the limit

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-\pi x} \, dx$$

is

(A) 0. (B)
$$\frac{1}{\pi - 1}$$
. \checkmark (C) $\frac{2}{\pi - 1}$. (D) 1.

(b) Is the following equality true?

$$\lim_{n \to \infty} \int_0^1 e^{\frac{x^2}{n}} \, dx = \int_0^1 \lim_{n \to \infty} e^{\frac{x^2}{n}} \, dx.$$

Solution: Yes, because the functions converge even uniformly.

(c) The value of the limit

$$\lim_{n \to \infty} \int_0^\infty \left(\frac{\sin x}{x}\right)^n \, dx$$

is

(A) 0.
$$\checkmark$$
 (B) 1. (C) + ∞ . (D) 2.

(d) Consider the following statements:

- (i) If $f \in L^{p}([0,1])$ for all $p \in (1,\infty)$, then $f \in L^{\infty}([0,1])$.
- (ii) If $1 \le p < q < +\infty$, then $L^q([1,\infty)) \subseteq L^p([1,\infty))$.

Which of them are true?

- (A) Both (i) and (ii).
- (B) (i) but not (ii).
- (C) (ii) but not (i).
- (D) Neither (i) nor (ii). \checkmark

Solution: Both statements are false. For the first one, consider $f(x) = \ln x$, and for the second one, the function $g(x) = x^{-r}$ belongs to $L^q([1,\infty))$ but not to $L^p([1,\infty))$ if $\frac{1}{q} < r < \frac{1}{p}$.

Exercise 12.2. Evaluate

$$\sum_{n=0}^{\infty} \int_0^{\frac{\pi}{2}} \left(1 - \sqrt{\sin x}\right)^n \cos x \, dx.$$

Solution: Since the integrands are nonnegative, by the Monotone Convergence applied to series, we can exchange the sum and the integral:

$$\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}} \left(1 - \sqrt{\sin x}\right)^{n} \cos x \, dx = \int_{0}^{\frac{\pi}{2}} \sum_{n=0}^{\infty} \left(1 - \sqrt{\sin x}\right)^{n} \cos x \, dx.$$

For $x \neq 0$ (which we can ignore), n only appears in a geometric series of ratio $1 - \sqrt{\sin x} \in (0, 1)$, so the pointwise sum equals

$$\sum_{n=0}^{\infty} \left(1 - \sqrt{\sin x}\right)^n \cos x = \frac{1}{1 - \left(1 - \sqrt{\sin x}\right)} \cos x = \frac{\cos x}{\sqrt{\sin x}}.$$

This function has as a primitive $2\sqrt{\sin x}$. Therefore the solution is

$$\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}} \left(1 - \sqrt{\sin x}\right)^{n} \cos x \, dx = \left[2\sqrt{\sin x}\right]_{0}^{\frac{\pi}{2}} = 2.$$

Exercise 12.3.

Let $1 \leq p < \infty$. Show that if $\varphi \in L^p(\mathbb{R}^n)$ and φ is uniformly continuous, then

$$\lim_{|x|\to\infty}\varphi(x)=0.$$

Solution: Suppose, by contradiction, that there is $\varepsilon > 0$ and a sequence $\{x_k\}$ with $|x_k| \to \infty$ and $|\varphi(x_k)| \ge \varepsilon$. Then by uniform continuity, there is $\delta > 0$ such that for every $x \in B_{\delta}(x_k)$ we have $|\varphi(x) - \varphi(x_k)| \le \varepsilon/2$, which implies that $|\varphi(x)| \ge \varepsilon/2$. Since $|x_k| \to \infty$, we can pass to a subsequence $\{x_{k_j}\}$ with $|x_{k_j}| > |x_{k_{j-1}}| + 2\delta$. This implies in particular that for any $j \ne j'$, $|x_{k_j} - x_{k_{j'}}| > 2\delta$, so that the balls $B_{\delta}(x_{k_j})$ and $B_{\delta}(x_{k_{j'}})$ are disjoint. Thus we get the following lower bound which shows that $\varphi \notin L^p(\mathbb{R}^n)$:

$$\int_{\mathbb{R}^n} |\varphi(x)|^p \, dx \ge \sum_{j=1}^\infty \int_{B_\delta(x_{k_j})} |\varphi(x)|^p \, dx \ge \sum_{j=1}^\infty \int_{B_\delta(x_{k_j})} \left(\frac{\varepsilon}{2}\right)^p \, dx = +\infty \qquad \qquad \square$$

Exercise 12.4. Let μ be a Radon measure on \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ a μ -measurable set.

(a) (Generalized Hölder inequality) Consider $1 \le p_1, \ldots, p_k \le \infty$ such that $\frac{1}{r} = \sum_{i=1}^k \frac{1}{p_i} \le 1$. Show that, given functions $f_i \in L^{p_i}(\Omega, \mu)$ for $i = 1, \ldots, k$, it holds $\prod_{i=1}^k f_i \in L^r(\Omega, \mu)$ and

$$\left\| \prod_{i=1}^{k} f_i \right\|_{L^r} \le \prod_{i=1}^{k} \|f_i\|_{L^{p_i}}$$

Solution: We can suppose that all p_i are finite, since it is easy to deal with $p_i = \infty$ directly. We will prove the statement by induction. For k = 1 there is nothing to prove. For the induction step $k - 1 \rightarrow k$, we know that $\frac{1}{r} - \frac{1}{p_k} = \frac{p_k - r}{p_k r} = \sum_{j=1}^{k-1} \frac{1}{p_j}$. By the induction hypothesis, we have that $\prod_{j=1}^{k-1} f_j \in L^{\frac{p_k r}{p_k - r}}(\Omega, \mu)$ together with the estimate

$$\left\| \prod_{j=1}^{k-1} f_j \right\|_{L^{\frac{p_k r}{p_k - r}}} \le \prod_{j=1}^{k-1} \|f_j\|_{L^{p_j}}.$$

Now we apply Hölder's inequality to the functions $g_1 = \prod_{j=1}^{k-1} |f_j|^r$ and $g_2 = |f_k|^r$, with exponents $\frac{p_k}{p_k-r}$ and $\frac{p_k}{r}$ respectively:

$$\int_{\Omega} \left(\prod_{j=1}^{k} |f_{k}| \right)^{r} \leq \left(\int_{\Omega} \prod_{j=1}^{k-1} |f_{j}|^{r} \frac{p_{k}}{p_{k}-r} \right)^{\frac{p_{k}-r}{p_{k}}} \left(\int_{\Omega} |f_{k}|^{r} \frac{p_{k}}{r} \right)^{\frac{r}{p_{k}}} \\ = \left\| \prod_{j=1}^{k-1} f_{j} \right\|_{L^{\frac{p_{k}r}{p_{k}-r}}}^{r} \|f_{k}\|_{L^{p_{k}}}^{r} \leq \prod_{j=1}^{k-1} \|f_{j}\|_{L^{p_{j}}}^{r} \cdot \|f_{k}\|_{L^{p_{k}}}^{r}.$$

This yields $\|\prod_{i=1}^k f_i\|_{L^r} \le \prod_{i=1}^k \|f_i\|_{L^{p_i}}$, as we wanted to show.

(b) Prove that, if $\mu(\Omega) < +\infty$, then $L^s(\Omega, \mu) \subseteq L^r(\Omega, \mu)$ for all $1 \le r < s \le +\infty$.

Solution: Fix $1 \leq r < s \leq +\infty$ and define p = rs/(s - r), for which it holds $\frac{1}{s} + \frac{1}{p} = \frac{1}{r}$. If $\mu(\Omega) < +\infty$, then $g = 1 \in L^p(\Omega, \mu)$, hence we can apply part (a) and obtain that, for all $f \in L^r(\Omega, \mu)$, $f = f \cdot 1 \in L^r(\Omega, \mu)$, which proves the desired inclusion.

(c) Show that the inclusion in part (b) is strict for all $1 \le r < s \le +\infty$.

Solution: For all $1 \le r < +\infty$, consider the function $f: (0, 1/2) \to \mathbb{R}$ given by

$$f(x) = \left(\log^2\left(\frac{1}{x}\right)x^{1/r}\right)^{-1}$$

Note that $f \in L^r$ since

$$\int_{0}^{1/2} \left(\log^2 \left(\frac{1}{x} \right) x^{1/r} \right)^{-r} dx = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1/2} \left(\log^{2r} \left(\frac{1}{x} \right) x \right)^{-1} \\ = \lim_{\varepsilon \to 0} \left[\frac{1}{(2r-1)\log^{2r-1}(1/x)} \right]_{\varepsilon}^{1/2} = \frac{1}{(2r-1)\log^{2r-1}(2)}$$

On the other hand $f \notin L^s$ for all s > r: in this case we can choose $0 < t < \frac{1}{r} - \frac{1}{s}$ and estimate $\log^2\left(\frac{1}{x}\right) \leq Cx^{-t}$ with a constant C > 0. Then follows

$$\left(\log^2\left(\frac{1}{x}\right)x^{1/r}\right)^{-1} \ge \frac{1}{C}x^{t-\frac{1}{r}}$$

with $s\left(t-\frac{1}{r}\right) < -1$, which is not integrable.

Exercise 12.5. \bigstar

Let μ be a Radon measure on \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ a μ -measurable set with $\mu(\Omega) < +\infty$. Consider a function $f: \Omega \to \overline{\mathbb{R}}$ such that $fg \in L^1(\Omega, \mu)$ for all $g \in L^p(\Omega, \mu)$. Prove that $f \in L^q(\Omega, \mu)$ for all $q \in [1, p')$, where $p' = \frac{p}{p-1}$ is the conjugate of p.

Solution: First note that, taking $g = 1 \in L^p(\Omega, \mu)$, we get that $f \in L^1(\Omega, \mu)$. Hence we can consider the function $g = |f|^{1/p} \in L^p(\Omega, \mu)$ and we get that $|f|^{1+1/p} \in L^1(\Omega, \mu)$. Therefore we can choose $g = |f|^{1/p+1/p^2} \in L^p(\Omega, \mu)$ and get that $|f|^{1+1/p+1/p^2} \in L^1(\Omega, \mu)$.

Repeating again the same argument by induction, we get that $|f|^{p_n} \in L^1(\Omega, \mu)$ for all $n \in \mathbb{N}$, where $p_n = 1 + \frac{1}{p} + \dots + \frac{1}{p^n} = \frac{1-1/p^{n+1}}{1-1/p}$. In particular we have that $f \in L^{p_n}(\Omega, \mu)$ for all $n \in \mathbb{N}$, which implies that $f \in L^q(\Omega, \mu)$ for all $1 \le q \le p_n$ by Exercise 12.4 (b). Now note that $p_n \to p'$ as $n \to \infty$, thus $f \in L^q(\Omega, \mu)$ for all $1 \le q < p'$, as desired.

Exercise 12.6.

Let μ be a Radon measure on \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ a μ -measurable set.

(a) Show that any $f \in \bigcap_{p \in \mathbb{N}^*} L^p(\Omega, \mu)$ with $\sup_{p \in \mathbb{N}^*} ||f||_{L^p} < +\infty$ lies in $L^{\infty}(\Omega, \mu)$. **Hint:** Tchebychev's inequality.

Solution: Let $C = \sup_{p \in \mathbb{N}^*} ||f||_{L^p}$ and $\varepsilon > 0$. Using Tchebychev' inequality, we have:

$$\begin{split} \mu(\{|f| \ge C + \varepsilon\}) &= \mu(\{|f|^p \ge (C + \varepsilon)^p\}) \le \frac{1}{(C + \varepsilon)^p} \int_{\Omega} |f|^p d\mu \\ &\le \left(\frac{C}{C + \varepsilon}\right)^p \to 0 \ , \quad \text{as } p \to \infty. \end{split}$$

Hence $\mu(\{|f| \ge C + \varepsilon) = 0$ and we deduce $f \in L^{\infty}$. Since $\varepsilon > 0$ was arbitrary, by

$$\mu(\{|f| > C\}) = \mu(\cup_{n \in \mathbb{N}} \{|f| \ge C + 1/n\}) \le \sum_{n \in \mathbb{N}} \mu(\{|f| \ge C + 1/n\}) = 0$$

we conclude $||f||_{L^{\infty}} \leq C$.

(b) \bigstar Show that if $\mu(\Omega) < +\infty$, then for any f as in part (a) we have that $||f||_{L^{\infty}} = \lim_{p \to \infty} ||f||_{L^{p}}$.

4/5

Solution: Choose a sequence $(p_k)_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty} ||f||_{L^{p_k}} = \liminf_{p\to\infty} ||f||_{L^p}$ and let $\varepsilon > 0$. Take k_0 , such that $||f||_{L^{p_k}} \leq \liminf_{p\to\infty} ||f||_{L^p} + \varepsilon$ for $k \geq k_0$. Analogous to (a), it follows $||f||_{L^{\infty}} \leq \liminf_{p\to\infty} ||f||_{L^p} + \varepsilon$ and by letting $\varepsilon \downarrow 0$, we deduce $||f||_{L^{\infty}} \leq \liminf_{p\to\infty} ||f||_{L^p}$.

For the opposite bound, choose a sequence $(p_k)_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} ||f||_{L^{p_k}} = \limsup_{p\to\infty} ||f||_{L^p}$. For q > p, we have $||f||_{L^q}^q \le ||f||_{L^p}^{q-p}$. Take p > 1 and $k_0 \in \mathbb{N}$, such that $p_k > p$ for $k \ge k_0$. It follows

$$\|f\|_{L^{p_k}} \le \|f\|_{L^p}^{\frac{p}{p_k}} \|f\|_{L^{\infty}}^{1-\frac{p}{p_k}} \xrightarrow{k \to \infty} 1 \cdot \|f\|_{L^{\infty}}.$$

As a result, we see $\limsup_{p\to\infty} \|f\|_{L^p} = \lim_{k\to\infty} \|f\|_{L^{p_k}} \le \|f\|_{L^{\infty}}$. Thus the limit is established. \Box

Exercise 12.7.

Let $(x_{n,m})_{(n,m)\in\mathbb{N}^2} \subset [0,+\infty]$ be a sequence parametrized by \mathbb{N}^2 . Show that

$$\sum_{(n,m)\in\mathbb{N}^2} x_{n,m} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n,m} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x_{n,m}.$$

Remark. Given a sequence $(x_{\alpha})_{\alpha \in A} \subset [0, +\infty]$ parametrized by an arbitrary set A, we define

$$\sum_{\alpha \in A} x_{\alpha} := \sup_{F \subset A \text{ finite }} \sum_{\alpha \in F} x_{\alpha}.$$

Solution: We show that $\sum_{(n,m)\in\mathbb{N}^2} x_{n,m} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n,m}$, then the other equality follows analogously. Let $F \subset \mathbb{N}^2$ be any finite set, then there exists $N \in \mathbb{N}$ such that $F \subset \{0, 1, \ldots, N\} \times \{0, 1, \ldots, N\}$. Hence we get that

$$\sum_{(n,m)\in F} x_{n,m} \le \sum_{n=0}^{N} \sum_{m=0}^{N} x_{n,m} \le \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n,m}.$$

Taking the supremum over all $F \subset \mathbb{N}^2$, we thus get that $\sum_{(n,m)\in\mathbb{N}^2} x_{n,m} \leq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n,m}$. Let us now prove the reversed inequality. It is sufficient to show that $\sum_{n=0}^{N} \sum_{m=0}^{\infty} x_{n,m} \leq \sum_{(n,m)\in\mathbb{N}^2} x_{n,m}$ for all $N \in \mathbb{N}$. Note that

$$\sum_{n=0}^{N} \sum_{m=0}^{\infty} x_{n,m} = \lim_{M \to \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} x_{n,m} = \lim_{M \to \infty} \sum_{(n,m) \in \{0,\dots,N\} \times \{0,\dots,M\}} x_{n,m} \le \sum_{(n,m) \in \mathbb{N}^2} x_{n,m},$$

which concludes the proof.