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Exercise 12.1. ♣
(a) The value of the limit

lim
n→∞

∫ n

0

(
1 +

x

n

)n

e−πx dx

is

(A) 0. (B) 1
π−1

. ! (C) 2
π−1

. (D) 1.

(b) Is the following equality true?

lim
n→∞

∫ 1

0

e
x2

n dx =

∫ 1

0

lim
n→∞

e
x2

n dx.

Solution: Yes, because the functions converge even uniformly.

(c) The value of the limit

lim
n→∞

∫ ∞

0

(
sinx

x

)n

dx

is

(A) 0. ! (B) 1. (C) +∞. (D) 2.

(d) Consider the following statements:

(i) If f ∈ Lp([0, 1]) for all p ∈ (1,∞), then f ∈ L∞([0, 1]).

(ii) If 1 ≤ p < q < +∞, then Lq([1,∞)) ⊆ Lp([1,∞)).

Which of them are true?

(A) Both (i) and (ii).

(B) (i) but not (ii).

(C) (ii) but not (i).

(D) Neither (i) nor (ii). !

Solution: Both statements are false. For the first one, consider f(x) = lnx, and for the second
one, the function g(x) = x−r belongs to Lq([1,∞)) but not to Lp([1,∞)) if 1

q < r < 1
p .

Exercise 12.2.
Evaluate

∞∑
n=0

∫ π
2

0

(
1−

√
sinx

)n

cosx dx.
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Solution: Since the integrands are nonnegative, by the Monotone Convergence applied to series,
we can exchange the sum and the integral:

∞∑
n=0

∫ π
2

0

(
1−

√
sinx

)n
cosx dx =

∫ π
2

0

∞∑
n=0

(
1−

√
sinx

)n
cosx dx.

For x ̸= 0 (which we can ignore), n only appears in a geometric series of ratio 1−
√
sinx ∈ (0, 1),

so the pointwise sum equals

∞∑
n=0

(
1−

√
sinx

)n
cosx =

1

1−
(
1−

√
sinx

) cosx =
cosx√
sinx

.

This function has as a primitive 2
√
sinx. Therefore the solution is

∞∑
n=0

∫ π
2

0

(
1−

√
sinx

)n
cosx dx =

[
2
√
sinx

]π
2

0
= 2.

Exercise 12.3.
Let 1 ≤ p < ∞. Show that if φ ∈ Lp(Rn) and φ is uniformly continuous, then

lim
|x|→∞

φ(x) = 0.

Solution: Suppose, by contradiction, that there is ε > 0 and a sequence {xk} with |xk| → ∞
and |φ(xk)| ≥ ε. Then by uniform continuity, there is δ > 0 such that for every x ∈ Bδ(xk) we
have |φ(x) − φ(xk)| ≤ ε/2, which implies that |φ(x)| ≥ ε/2. Since |xk| → ∞, we can pass to
a subsequence {xkj} with |xkj | > |xkj−1

| + 2δ. This implies in particular that for any j ̸= j′,
|xkj − xkj′ | > 2δ, so that the balls Bδ(xkj ) and Bδ(xkj′ ) are disjoint. Thus we get the following
lower bound which shows that φ /∈ Lp(Rn):∫

Rn

|φ(x)|p dx ≥
∞∑
j=1

∫
Bδ(xkj

)
|φ(x)|p dx ≥

∞∑
j=1

∫
Bδ(xkj

)

(ε
2

)p
dx = +∞

Exercise 12.4.
Let µ be a Radon measure on Rn and Ω ⊂ Rn a µ-measurable set.

2 / 5



D-MATH
Prof. Francesca Da Lio

Analysis III (Measure Theory)
Sample Solutions Sheet 12

ETH Zürich
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(a) (Generalized Hölder inequality) Consider 1 ≤ p1, . . . , pk ≤ ∞ such that 1
r
=

∑k
i=1

1
pi
≤ 1.

Show that, given functions fi ∈ Lpi(Ω, µ) for i = 1, . . . , k, it holds
∏k

i=1 fi ∈ Lr(Ω, µ) and∥∥∥∥ k∏
i=1

fi

∥∥∥∥
Lr

≤
k∏

i=1

∥fi∥Lpi .

Solution: We can suppose that all pi are finite, since it is easy to deal with pi = ∞ directly. We
will prove the statement by induction. For k = 1 there is nothing to prove. For the induction step
k − 1 → k, we know that 1

r − 1
pk

= pk−r
pkr

=
∑k−1

j=1
1
pj
. By the induction hypothesis, we have that∏k−1

j=1 fj ∈ L
pkr

pk−r (Ω, µ) together with the estimate∥∥∥∥∥∥
k−1∏
j=1

fj

∥∥∥∥∥∥
L

pkr
pk−r

≤
k−1∏
j=1

∥fj∥Lpj .

Now we apply Hölder’s inequality to the functions g1 =
∏k−1

j=1 |fj |r and g2 = |fk|r, with exponents
pk

pk−r and pk
r respectively:

∫
Ω

 k∏
j=1

|fk|

r

≤

∫
Ω

k−1∏
j=1

|fj |
r

pk
pk−r


pk−r

pk (∫
Ω
|fk|r

pk
r

) r
pk

=

∥∥∥∥∥∥
k−1∏
j=1

fj

∥∥∥∥∥∥
r

L
pkr
pk−r

∥fk∥rLpk ≤
k−1∏
j=1

∥fj∥rLpj · ∥fk∥rLpk .

This yields ∥
∏k

i=1 fi∥Lr ≤
∏k

i=1 ∥fi∥Lpi , as we wanted to show.

(b) Prove that, if µ(Ω) < +∞, then Ls(Ω, µ) ⊆ Lr(Ω, µ) for all 1 ≤ r < s ≤ +∞.

Solution: Fix 1 ≤ r < s ≤ +∞ and define p = rs/(s − r), for which it holds 1
s + 1

p = 1
r .

If µ(Ω) < +∞, then g = 1 ∈ Lp(Ω, µ), hence we can apply part (a) and obtain that, for all
f ∈ Lr(Ω, µ), f = f · 1 ∈ Lr(Ω, µ), which proves the desired inclusion.

(c) Show that the inclusion in part (b) is strict for all 1 ≤ r < s ≤ +∞.

Solution: For all 1 ≤ r < +∞, consider the function f : (0, 1/2) → R given by

f(x) =

(
log2

(
1

x

)
x1/r

)−1

.

Note that f ∈ Lr since∫ 1/2

0

(
log2

(
1

x

)
x1/r

)−r

dx = lim
ε→0

∫ 1/2

ε

(
log2r

(
1

x

)
x

)−1

= lim
ε→0

[
1

(2r − 1) log2r−1(1/x)

]1/2
ε

=
1

(2r − 1) log2r−1(2)
.
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ETH Zürich
HS 2023

On the other hand f ̸∈ Ls for all s > r: in this case we can choose 0 < t < 1
r − 1

s and estimate
log2

(
1
x

)
≤ Cx−t with a constant C > 0. Then follows(

log2
(
1

x

)
x1/r

)−1

≥ 1

C
xt−

1
r

with s
(
t− 1

r

)
< −1, which is not integrable.

Exercise 12.5. ⋆
Let µ be a Radon measure on Rn and Ω ⊂ Rn a µ-measurable set with µ(Ω) < +∞. Consider
a function f : Ω → R such that fg ∈ L1(Ω, µ) for all g ∈ Lp(Ω, µ). Prove that f ∈ Lq(Ω, µ)
for all q ∈ [1, p′), where p′ = p

p−1
is the conjugate of p.

Solution: First note that, taking g = 1 ∈ Lp(Ω, µ), we get that f ∈ L1(Ω, µ). Hence we can
consider the function g = |f |1/p ∈ Lp(Ω, µ) and we get that |f |1+1/p ∈ L1(Ω, µ). Therefore we can
choose g = |f |1/p+1/p2 ∈ Lp(Ω, µ) and get that |f |1+1/p+1/p2 ∈ L1(Ω, µ).

Repeating again the same argument by induction, we get that |f |pn ∈ L1(Ω, µ) for all n ∈ N, where
pn = 1 + 1

p + · · · + 1
pn = 1−1/pn+1

1−1/p . In particular we have that f ∈ Lpn(Ω, µ) for all n ∈ N, which
implies that f ∈ Lq(Ω, µ) for all 1 ≤ q ≤ pn by Exercise 12.4 (b). Now note that pn → p′ as n → ∞,
thus f ∈ Lq(Ω, µ) for all 1 ≤ q < p′, as desired.

Exercise 12.6.
Let µ be a Radon measure on Rn and Ω ⊂ Rn a µ-measurable set.

(a) Show that any f ∈
⋂

p∈N∗ Lp(Ω, µ) with supp∈N∗ ∥f∥Lp < +∞ lies in L∞(Ω, µ).

Hint: Tchebychev’s inequality.

Solution: Let C = supp∈N∗∥f∥Lp and ε > 0. Using Tchebychev’ inequality, we have:

µ({|f | ≥ C + ε}) = µ({|f |p ≥ (C + ε)p}) ≤ 1

(C + ε)p

∫
Ω
|f |pdµ

≤
(

C

C + ε

)p

→ 0 , as p → ∞.

Hence µ({|f | ≥ C + ε) = 0 and we deduce f ∈ L∞. Since ε > 0 was arbitrary, by

µ({|f | > C}) = µ(∪n∈N{|f | ≥ C + 1/n}) ≤
∑
n∈N

µ({|f | ≥ C + 1/n}) = 0

we conclude ∥f∥L∞ ≤ C.

(b) ⋆ Show that if µ(Ω) < +∞, then for any f as in part (a) we have that ∥f∥L∞ =
lim
p→∞

∥f∥Lp .
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Solution: Choose a sequence (pk)k∈N such that limk→∞∥f∥Lpk = lim infp→∞∥f∥Lp and let ε > 0.
Take k0, such that ∥f∥Lpk ≤ lim infp→∞∥f∥Lp + ε for k ≥ k0. Analogous to (a), it follows ∥f∥L∞ ≤
lim infp→∞∥f∥Lp + ε and by letting ε ↓ 0, we deduce ∥f∥L∞ ≤ lim infp→∞∥f∥Lp .

For the opposite bound, choose a sequence (pk)k∈N with limk→∞∥f∥Lpk = lim supp→∞∥f∥Lp . For

q > p, we have ∥f∥qLq ≤ ∥f∥pLp∥f∥q−p
L∞ . Take p > 1 and k0 ∈ N, such that pk > p for k ≥ k0. It

follows

∥f∥Lpk ≤ ∥f∥
p
pk
Lp ∥f∥

1− p
pk

L∞
k→∞−−−→ 1 · ∥f∥L∞ .

As a result, we see lim supp→∞∥f∥Lp = limk→∞∥f∥Lpk ≤ ∥f∥L∞ . Thus the limit is established.

Exercise 12.7.
Let (xn,m)(n,m)∈N2 ⊂ [0,+∞] be a sequence parametrized by N2. Show that

∑
(n,m)∈N2

xn,m =
∞∑
n=0

∞∑
m=0

xn,m =
∞∑

m=0

∞∑
n=0

xn,m.

Remark. Given a sequence (xα)α∈A ⊂ [0,+∞] parametrized by an arbitrary set A, we define∑
α∈A

xα := sup
F ⊂ A finite

∑
α∈F

xα.

Solution: We show that
∑

(n,m)∈N2 xn,m =
∑∞

n=0

∑∞
m=0 xn,m, then the other equality follows

analogously. Let F ⊂ N2 be any finite set, then there exists N ∈ N such that F ⊂ {0, 1, . . . , N} ×
{0, 1, . . . , N}. Hence we get that

∑
(n,m)∈F

xn,m ≤
N∑

n=0

N∑
m=0

xn,m ≤
∞∑
n=0

∞∑
m=0

xn,m.

Taking the supremum over all F ⊂ N2, we thus get that
∑

(n,m)∈N2 xn,m ≤
∑∞

n=0

∑∞
m=0 xn,m. Let us

now prove the reversed inequality. It is sufficient to show that
∑N

n=0

∑∞
m=0 xn,m ≤

∑
(n,m)∈N2 xn,m

for all N ∈ N. Note that

N∑
n=0

∞∑
m=0

xn,m = lim
M→∞

N∑
n=0

M∑
m=0

xn,m = lim
M→∞

∑
(n,m)∈{0,...,N}×{0,...,M}

xn,m ≤
∑

(n,m)∈N2

xn,m,

which concludes the proof.
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