Exercise 12.1.

(a) The value of the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-\pi x} d x
$$

is
(A) 0 .
(B) $\frac{1}{\pi-1}$.
(C) $\frac{2}{\pi-1}$.
(D) 1 .
(b) Is the following equality true?

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} e^{\frac{x^{2}}{n}} d x=\int_{0}^{1} \lim _{n \rightarrow \infty} e^{\frac{x^{2}}{n}} d x
$$

Solution: Yes, because the functions converge even uniformly.
(c) The value of the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{n} d x
$$

is
(A) 0 .
(B) 1 .
(C) $+\infty$.
(D) 2 .
(d) Consider the following statements:
(i) If $f \in L^{p}([0,1])$ for all $p \in(1, \infty)$, then $f \in L^{\infty}([0,1])$.
(ii) If $1 \leq p<q<+\infty$, then $L^{q}([1, \infty)) \subseteq L^{p}([1, \infty))$.

Which of them are true?
(A) Both (i) and (ii).
(B) (i) but not (ii).
(C) (ii) but not (i).
(D) Neither (i) nor (ii).

Solution: Both statements are false. For the first one, consider $f(x)=\ln x$, and for the second one, the function $g(x)=x^{-r}$ belongs to $L^{q}([1, \infty))$ but not to $L^{p}([1, \infty))$ if $\frac{1}{q}<r<\frac{1}{p}$.

Exercise 12.2.

Evaluate

$$
\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}}(1-\sqrt{\sin x})^{n} \cos x d x
$$

Solution: Since the integrands are nonnegative, by the Monotone Convergence applied to series, we can exchange the sum and the integral:

$$
\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}}(1-\sqrt{\sin x})^{n} \cos x d x=\int_{0}^{\frac{\pi}{2}} \sum_{n=0}^{\infty}(1-\sqrt{\sin x})^{n} \cos x d x
$$

For $x \neq 0$ (which we can ignore), n only appears in a geometric series of ratio $1-\sqrt{\sin x} \in(0,1)$, so the pointwise sum equals

$$
\sum_{n=0}^{\infty}(1-\sqrt{\sin x})^{n} \cos x=\frac{1}{1-(1-\sqrt{\sin x})} \cos x=\frac{\cos x}{\sqrt{\sin x}} .
$$

This function has as a primitive $2 \sqrt{\sin x}$. Therefore the solution is

$$
\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}}(1-\sqrt{\sin x})^{n} \cos x d x=[2 \sqrt{\sin x}]_{0}^{\frac{\pi}{2}}=2
$$

Exercise 12.3.

Let $1 \leq p<\infty$. Show that if $\varphi \in L^{p}\left(\mathbb{R}^{n}\right)$ and φ is uniformly continuous, then

$$
\lim _{|x| \rightarrow \infty} \varphi(x)=0
$$

Solution: Suppose, by contradiction, that there is $\varepsilon>0$ and a sequence $\left\{x_{k}\right\}$ with $\left|x_{k}\right| \rightarrow \infty$ and $\left|\varphi\left(x_{k}\right)\right| \geq \varepsilon$. Then by uniform continuity, there is $\delta>0$ such that for every $x \in B_{\delta}\left(x_{k}\right)$ we have $\left|\varphi(x)-\varphi\left(x_{k}\right)\right| \leq \varepsilon / 2$, which implies that $|\varphi(x)| \geq \varepsilon / 2$. Since $\left|x_{k}\right| \rightarrow \infty$, we can pass to a subsequence $\left\{x_{k_{j}}\right\}$ with $\left|x_{k_{j}}\right|>\left|x_{k_{j-1}}\right|+2 \delta$. This implies in particular that for any $j \neq j^{\prime}$, $\left|x_{k_{j}}-x_{k_{j^{\prime}}}\right|>2 \delta$, so that the balls $B_{\delta}\left(x_{k_{j}}\right)$ and $B_{\delta}\left(x_{k_{j^{\prime}}}\right)$ are disjoint. Thus we get the following lower bound which shows that $\varphi \notin L^{p}\left(\mathbb{R}^{n}\right)$:

$$
\int_{\mathbb{R}^{n}}|\varphi(x)|^{p} d x \geq \sum_{j=1}^{\infty} \int_{B_{\delta}\left(x_{k_{j}}\right)}|\varphi(x)|^{p} d x \geq \sum_{j=1}^{\infty} \int_{B_{\delta}\left(x_{k_{j}}\right)}\left(\frac{\varepsilon}{2}\right)^{p} d x=+\infty
$$

Exercise 12.4.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set.
(a) (Generalized Hölder inequality) Consider $1 \leq p_{1}, \ldots, p_{k} \leq \infty$ such that $\frac{1}{r}=\sum_{i=1}^{k} \frac{1}{p_{i}} \leq 1$. Show that, given functions $f_{i} \in L^{p_{i}}(\Omega, \mu)$ for $i=1, \ldots, k$, it holds $\prod_{i=1}^{k} f_{i} \in L^{r}(\Omega, \mu)$ and

$$
\left\|\prod_{i=1}^{k} f_{i}\right\|_{L^{r}} \leq \prod_{i=1}^{k}\left\|f_{i}\right\|_{L^{p_{i}}} .
$$

Solution: We can suppose that all p_{i} are finite, since it is easy to deal with $p_{i}=\infty$ directly. We will prove the statement by induction. For $k=1$ there is nothing to prove. For the induction step $k-1 \rightarrow k$, we know that $\frac{1}{r}-\frac{1}{p_{k}}=\frac{p_{k}-r}{p_{k} r}=\sum_{j=1}^{k-1} \frac{1}{p_{j}}$. By the induction hypothesis, we have that $\prod_{j=1}^{k-1} f_{j} \in L^{\frac{p_{k} r}{p_{k}-r}}(\Omega, \mu)$ together with the estimate

$$
\left\|\prod_{j=1}^{k-1} f_{j}\right\|_{L^{\frac{p_{k}}{p_{k}}-r}} \leq \prod_{j=1}^{k-1}\left\|f_{j}\right\|_{L^{p_{j}}} .
$$

Now we apply Hölder's inequality to the functions $g_{1}=\prod_{j=1}^{k-1}\left|f_{j}\right|^{r}$ and $g_{2}=\left|f_{k}\right|^{r}$, with exponents $\frac{p_{k}}{p_{k}-r}$ and $\frac{p_{k}}{r}$ respectively:

$$
\begin{aligned}
\int_{\Omega}\left(\prod_{j=1}^{k}\left|f_{k}\right|\right)^{r} & \leq\left(\int_{\Omega} \prod_{j=1}^{k-1}\left|f_{j}\right|^{\frac{p_{k}}{p_{k}-r}}\right)^{\frac{p_{k}-r}{p_{k}}}\left(\int_{\Omega}\left|f_{k}\right|^{\frac{p_{k}}{r}}\right)^{\frac{r}{p_{k}}} \\
& =\left\|\prod_{j=1}^{k-1} f_{j}\right\|_{L^{p_{k}-r}}^{r}\left\|f_{k}\right\|_{L^{p_{k}}}^{r} \leq \prod_{j=1}^{k-1}\left\|f_{j}\right\|_{L^{p_{j}}}^{r} \cdot\left\|f_{k}\right\|_{L^{p_{k}}}^{r} .
\end{aligned}
$$

This yields $\left\|\prod_{i=1}^{k} f_{i}\right\|_{L^{r}} \leq \prod_{i=1}^{k}\left\|f_{i}\right\|_{L^{p_{i}}}$, as we wanted to show.
(b) Prove that, if $\mu(\Omega)<+\infty$, then $L^{s}(\Omega, \mu) \subseteq L^{r}(\Omega, \mu)$ for all $1 \leq r<s \leq+\infty$.

Solution: Fix $1 \leq r<s \leq+\infty$ and define $p=r s /(s-r)$, for which it holds $\frac{1}{s}+\frac{1}{p}=\frac{1}{r}$. If $\mu(\Omega)<+\infty$, then $g=1 \in L^{p}(\Omega, \mu)$, hence we can apply part (a) and obtain that, for all $f \in L^{r}(\Omega, \mu), f=f \cdot 1 \in L^{r}(\Omega, \mu)$, which proves the desired inclusion.
(c) Show that the inclusion in part (b) is strict for all $1 \leq r<s \leq+\infty$.

Solution: For all $1 \leq r<+\infty$, consider the function $f:(0,1 / 2) \rightarrow \mathbb{R}$ given by

$$
f(x)=\left(\log ^{2}\left(\frac{1}{x}\right) x^{1 / r}\right)^{-1} .
$$

Note that $f \in L^{r}$ since

$$
\begin{aligned}
\int_{0}^{1 / 2}\left(\log ^{2}\left(\frac{1}{x}\right) x^{1 / r}\right)^{-r} d x & =\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1 / 2}\left(\log ^{2 r}\left(\frac{1}{x}\right) x\right)^{-1} \\
& =\lim _{\varepsilon \rightarrow 0}\left[\frac{1}{(2 r-1) \log ^{2 r-1}(1 / x)}\right]_{\varepsilon}^{1 / 2}=\frac{1}{(2 r-1) \log ^{2 r-1}(2)}
\end{aligned}
$$

On the other hand $f \notin L^{s}$ for all $s>r$: in this case we can choose $0<t<\frac{1}{r}-\frac{1}{s}$ and estimate $\log ^{2}\left(\frac{1}{x}\right) \leq C x^{-t}$ with a constant $C>0$. Then follows

$$
\left(\log ^{2}\left(\frac{1}{x}\right) x^{1 / r}\right)^{-1} \geq \frac{1}{C} x^{t-\frac{1}{r}}
$$

with $s\left(t-\frac{1}{r}\right)<-1$, which is not integrable.

Exercise 12.5.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set with $\mu(\Omega)<+\infty$. Consider a function $f: \Omega \rightarrow \overline{\mathbb{R}}$ such that $f g \in L^{1}(\Omega, \mu)$ for all $g \in L^{p}(\Omega, \mu)$. Prove that $f \in L^{q}(\Omega, \mu)$ for all $q \in\left[1, p^{\prime}\right)$, where $p^{\prime}=\frac{p}{p-1}$ is the conjugate of p.

Solution: First note that, taking $g=1 \in L^{p}(\Omega, \mu)$, we get that $f \in L^{1}(\Omega, \mu)$. Hence we can consider the function $g=|f|^{1 / p} \in L^{p}(\Omega, \mu)$ and we get that $|f|^{1+1 / p} \in L^{1}(\Omega, \mu)$. Therefore we can choose $g=|f|^{1 / p+1 / p^{2}} \in L^{p}(\Omega, \mu)$ and get that $|f|^{1+1 / p+1 / p^{2}} \in L^{1}(\Omega, \mu)$.
Repeating again the same argument by induction, we get that $|f|^{p_{n}} \in L^{1}(\Omega, \mu)$ for all $n \in \mathbb{N}$, where $p_{n}=1+\frac{1}{p}+\cdots+\frac{1}{p^{n}}=\frac{1-1 / p^{n+1}}{1-1 / p}$. In particular we have that $f \in L^{p_{n}}(\Omega, \mu)$ for all $n \in \mathbb{N}$, which implies that $f \in L^{q}(\Omega, \mu)$ for all $1 \leq q \leq p_{n}$ by Exercise 12.4 (b). Now note that $p_{n} \rightarrow p^{\prime}$ as $n \rightarrow \infty$, thus $f \in L^{q}(\Omega, \mu)$ for all $1 \leq q<p^{\prime}$, as desired.

Exercise 12.6.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set.
(a) Show that any $f \in \bigcap_{p \in \mathbb{N}^{*}} L^{p}(\Omega, \mu)$ with $\sup _{p \in \mathbb{N}^{*}}\|f\|_{L^{p}}<+\infty$ lies in $L^{\infty}(\Omega, \mu)$.

Hint: Tchebychev's inequality.
Solution: Let $C=\sup _{p \in \mathbb{N}^{*}}\|f\|_{L^{p}}$ and $\varepsilon>0$. Using Tchebychev' inequality, we have:

$$
\begin{aligned}
\mu(\{|f| \geq C+\varepsilon\}) & =\mu\left(\left\{|f|^{p} \geq(C+\varepsilon)^{p}\right\}\right) \leq \frac{1}{(C+\varepsilon)^{p}} \int_{\Omega}|f|^{p} d \mu \\
& \leq\left(\frac{C}{C+\varepsilon}\right)^{p} \rightarrow 0, \quad \text { as } p \rightarrow \infty .
\end{aligned}
$$

Hence $\mu\left(\{|f| \geq C+\varepsilon)=0\right.$ and we deduce $f \in L^{\infty}$. Since $\varepsilon>0$ was arbitrary, by

$$
\mu(\{|f|>C\})=\mu\left(\cup_{n \in \mathbb{N}}\{|f| \geq C+1 / n\}\right) \leq \sum_{n \in \mathbb{N}} \mu(\{|f| \geq C+1 / n\})=0
$$

we conclude $\|f\|_{L^{\infty}} \leq C$.
(b) \star Show that if $\mu(\Omega)<+\infty$, then for any f as in part (a) we have that $\|f\|_{L^{\infty}}=$ $\lim _{p \rightarrow \infty}\|f\|_{L^{p}}$.

Solution: Choose a sequence $\left(p_{k}\right)_{k \in \mathbb{N}}$ such that $\lim _{k \rightarrow \infty}\|f\|_{L^{p_{k}}}=\liminf _{p \rightarrow \infty}\|f\|_{L^{p}}$ and let $\varepsilon>0$. Take k_{0}, such that $\|f\|_{L^{p_{k}}} \leq \liminf _{p \rightarrow \infty}\|f\|_{L^{p}}+\varepsilon$ for $k \geq k_{0}$. Analogous to (a), it follows $\|f\|_{L^{\infty}} \leq$ $\liminf _{p \rightarrow \infty}\|f\|_{L^{p}}+\varepsilon$ and by letting $\varepsilon \downarrow 0$, we deduce $\|f\|_{L^{\infty}} \leq \liminf _{p \rightarrow \infty}\|f\|_{L^{p}}$.
For the opposite bound, choose a sequence $\left(p_{k}\right)_{k \in \mathbb{N}}$ with $\lim _{k \rightarrow \infty}\|f\|_{L^{p_{k}}}=\lim \sup _{p \rightarrow \infty}\|f\|_{L^{p}}$. For $q>p$, we have $\|f\|_{L^{q}}^{q} \leq\|f\|_{L^{p}}^{p}\|f\|_{L^{\infty}}^{q-p}$. Take $p>1$ and $k_{0} \in \mathbb{N}$, such that $p_{k}>p$ for $k \geq k_{0}$. It follows

$$
\|f\|_{L^{p_{k}}} \leq\|f\|_{L^{p}}^{\frac{p}{p_{k}}}\|f\|_{L^{\infty}}^{1-\frac{p}{p_{k}}} \xrightarrow{k \rightarrow \infty} 1 \cdot\|f\|_{L^{\infty}} .
$$

As a result, we see $\lim \sup _{p \rightarrow \infty}\|f\|_{L^{p}}=\lim _{k \rightarrow \infty}\|f\|_{L^{p_{k}}} \leq\|f\|_{L^{\infty}}$. Thus the limit is established.

Exercise 12.7.

Let $\left(x_{n, m}\right)_{(n, m) \in \mathbb{N}^{2}} \subset[0,+\infty]$ be a sequence parametrized by \mathbb{N}^{2}. Show that

$$
\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x_{n, m}
$$

Remark. Given a sequence $\left(x_{\alpha}\right)_{\alpha \in A} \subset[0,+\infty]$ parametrized by an arbitrary set A, we define

$$
\sum_{\alpha \in A} x_{\alpha}:=\sup _{F \subset A \text { finite }} \sum_{\alpha \in F} x_{\alpha} .
$$

Solution: We show that $\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}$, then the other equality follows analogously. Let $F \subset \mathbb{N}^{2}$ be any finite set, then there exists $N \in \mathbb{N}$ such that $F \subset\{0,1, \ldots, N\} \times$ $\{0,1, \ldots, N\}$. Hence we get that

$$
\sum_{(n, m) \in F} x_{n, m} \leq \sum_{n=0}^{N} \sum_{m=0}^{N} x_{n, m} \leq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m} .
$$

Taking the supremum over all $F \subset \mathbb{N}^{2}$, we thus get that $\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m} \leq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}$. Let us now prove the reversed inequality. It is sufficient to show that $\sum_{n=0}^{N} \sum_{m=0}^{\infty} x_{n, m} \leq \sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}$ for all $N \in \mathbb{N}$. Note that

$$
\sum_{n=0}^{N} \sum_{m=0}^{\infty} x_{n, m}=\lim _{M \rightarrow \infty} \sum_{n=0}^{N} \sum_{m=0}^{M} x_{n, m}=\lim _{M \rightarrow \infty} \sum_{(n, m) \in\{0, \ldots, N\} \times\{0, \ldots, M\}} x_{n, m} \leq \sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m},
$$

which concludes the proof.

