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Exercise 13.1. ♣
(a) The value of the limit

lim
k→∞

∫ k

0

(
1− x

k

)k
ex/3 dx

is

(A) 0. (B) 3
2
. ! (C) 1. (D) +∞.

Solution: This follows from Dominated Convergence by using the dominating function e−2x/3,
which is summable on (0,∞). More precisely, we need to show that(

1− x

k

)k
χ[0,k](x) ≤ e−x.

For k < x this is trivial; for k ≥ x, since 1−x/k > 0, we may take both sides to the power 1/k and
use the change of variable y = x/k, so the inequality to prove becomes 1 − y ≤ e−y, which is well
known. Then we can pass to the limit under the integral and obtain

lim
k→∞

∫ k

0

(
1− x

k

)k
ex/3 dx =

∫ ∞

0
lim
k→∞

(
1− x

k

)k
ex/3 dx =

∫ ∞

0
e−x · ex/3 dx =

∫ ∞

0
e−2x/3 dx =

3

2
.

(b) The value of the limit

lim
n→∞

n

∫ ∞

0

sin
(
x
n

)
x(1 + x2)

dx

is

(A) 0. (B) π
2
. ! (C) π

4
. (D) 1.

Solution: Write the integrals as ∫ ∞

0
fn(x)

1

1 + x2
dx

where we have used

fn(x) :=
sin(x/n)

x/n
,

and notice that |fn(x)| ≤ 1 for every x ∈ (0,∞). Moreover observe that fn(x) → 1 as n → ∞ for
every x ∈ (0,∞). Hence we may apply Dominated Convergence and deduce

lim
n→∞

∫ ∞

0
fn(x)

1

1 + x2
dx =

∫ ∞

0
1

1

1 + x2
dx = arctan(∞)− arctan(0) =

π

2
.

(c) Let fn ∈ L1(0, 1) ∩ L2(0, 1) for n = 1, 2, 3, . . . and consider the following statements:

(i) If ∥fn∥L1 → 0, then ∥fn∥L2 → 0.

(ii) If ∥fn∥L2 → 0, then ∥fn∥L1 → 0.

Which of them are true?

(A) Both (i) and (ii).
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(B) (i) but not (ii).

(C) (ii) but not (i). !

(D) Neither (i) nor (ii).

Solution: A counterexample to (i) is given by fn = nχ(0,1/n2), which converges to zero in L1 but
has L2 norm ∥fn∥L2 ≡ 1 for all n. On the other hand, (ii) is true thanks to the Hölder inequality.

(d) Is it true that a sequence of functions in L1(0, 1) converging in measure also converges
in the L1 norm?

Solution: No, consider for example fn = nχ(0,1/n), which converge to zero in measure but whose
L1 norm is 1 for all n.

Exercise 13.2.
Consider the functions

fn(x) =
√
nχ[log(n),log(n+1)](x)

defined on (0,∞). Determine the values of p ∈ [1,+∞] such that fn → 0 in Lp as n → ∞.

Solution: The suprema of these functions clearly diverges, so it is enough to consider p < ∞. We
compute the norm of fn:

∥fn∥Lp =

(∫ ∞

0

√
n
p
χ[log(n),log(n+1)]

)1/p

=

(
np/2 · log n+ 1

n

)1/p

Recall that limn→∞ n log
(
1 + 1

n

)
= 1. Thus we may rearrange the above expression as

∥fn∥Lp =

(
np/2−1 · n log

n+ 1

n

)1/p

.

Now it is clear that for p < 2 the first factor goes to zero, and for p ≥ 2 it is bounded below, while
the second factor converges to 1. Therefore we have convergence in Lp precisely for p ∈ [1, 2).

Exercise 13.3.
Let f ∈ Lp(R, λ), where λ is the Lebesgue measure. By means of Fubini’s Theorem, show
that the following equality holds:∫

R
|f(x)|pdx = p

∫ ∞

0

yp−1λ({x ∈ R : |f(x)| ≥ y}) dy.

Hint: |f(x)|p =
∫ |f(x)|
0

pyp−1dy.
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Solution: It is easy to see that |f(x)|p =
∫ |f(x)|
0 pyp−1dy. Therefore, using Fubini’s Theorem in

the second line (to change the order of integration), we get∫
R
|f(x)|pdx =

∫
R

(∫ |f(x)|

0
pyp−1dy

)
dx = p

∫
R

(∫
R
yp−1χ[ 0,|f(x)| ](y)dy

)
dx

= p

∫
R

(∫
R
χ{(x,y)∈R2: 0≤y≤|f(x)|}(x, y) dx

)
yp−1dy

= p

∫
R
λ({x ∈ R : |f(x)| ≥ y})χ[0,+∞)(y)y

p−1dy

= p

∫ ∞

0
yp−1λ({x ∈ R : |f(x)| ≥ y})dy.

Exercise 13.4.
Define the function f : [0, 1]2 → R as

f(x, y) :=


y−2 if 0 < x < y < 1,

−x−2 if 0 < y < x < 1,

0 otherwise.

Is this function summable with respect to the Lebesgue measure?

Solution: We want to prove that f is not summable. Suppose it were summable. Then, we could
change the order of integration thanks to Fubini’s Theorem. However, this leads to a contradiction
since ∫ 1

0

∫ 1

0
f(x, y)dxdy =

∫ 1

0

(∫ y

0

1

y2
dx−

∫ 1

y

1

x2
dx

)
dy = 1

and ∫ 1

0

∫ 1

0
f(x, y)dydx =

∫ 1

0

(∫ x

0
− 1

x2
dy +

∫ 1

x

1

y2
dy

)
dx = −1 .

Exercise 13.5.
Let 1 ≤ p < +∞ and f ∈ Lp(Rn) and, for all h ∈ Rn, consider the function τh : Rn → Rn

given by τh(x) = x+ h. Show that

∥f ◦ τh − f∥Lp → 0 as h → 0.

Hint: use the density of continuous and compactly supported functions in Lp (Theorem
3.7.15 in the Lecture Notes).
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Solution: Fix ε > 0, then by Theorem 3.7.15 there exists g ∈ C0
c (Rn) such that ∥f − g∥Lp < ε/3.

Define the compact set K = {x ∈ Rn | d(x, supp(g)) ≤ 1}, then for |h| ≤ 1 we have

∥g ◦ τh − g∥pLp =

∫
K
|g(x+ h)− g(x)|pdx ≤ Ln(K) sup

|x−y|≤h
|g(x)− g(y)|.

Therefore, using that g is uniformly continuous, there exists r > 0 such that ∥g ◦ τh − g∥Lp < ε/3
for all |h| ≤ r. Hence, for all |h| ≤ r, we have

∥f ◦ τh − f∥Lp ≤ ∥f ◦ τh − g ◦ τh∥Lp + ∥g ◦ τh − g∥Lp + ∥g − f∥Lp < ε,

which proves what we wanted by arbitrariness of ε.

Exercise 13.6. ⋆
We say that a family (φε)ε>0 of functions in L1(Rn) is an approximate identity if:

1. φε ≥ 0 and
∫
Rn φε(x)dx = 1 for all ε > 0;

2. for all δ > 0 we have that
∫
{|x|≥δ} φε(x)dx → 0 as ε → 0.

(a) Given φ ∈ L1(Rn) such that φ ≥ 0 and
∫
Rn φ(x)dx = 1, define φε(x) = ε−nφ(ε−1x) for

all ε > 0. Show that (φε)ε>0 is an approximate identity.

Solution: Obviously we have that φε ≥ 0. Moreover∫
Rn

φε(x)dx =

∫
Rn

φ(ε−1(x))ε−ndx =

∫
Rn

φ(y)dy = 1,

where we made the change of variable y = ε−1x and we used the fact that Ln(ε−1A) = ε−nLn(A)
for all Ln-measurable sets A. Fix now δ > 0, using the same change of variable we get∫

{|x|≥δ}
φε(x)dx =

∫
{|x|≥δ}

φ(ε−1(x))ε−ndx =

∫
{|y|≥ε−1δ}

φ(y)dy,

which converges to 0 by the Dominated Convergence Theorem, since the functions φχ{|y|≥ε−1δ}
converge pointwise to zero almost everywhere and are dominated by the Ln-summable function
φ.

Let (φε)ε>0 ⊂ L1(Rn) be an approximate identity. Show that the following statements hold.

(b) If f ∈ L∞(Rn) is continuous at x0 ∈ Rn, then f∗φε is continuous and (f∗φε)(x0) → f(x0)
as ε → 0+.

Solution: Let us first prove that f ∗ φε is continuous. Note that, for all h ∈ Rn, we have

(f ∗ φε)(x+ h) =

∫
Rn

f(y)φε(x+ h− y)dy =

∫
Rn

f(y)(φε ◦ τh)(x− y)dy = (f ∗ (φε ◦ τh))(x).

Hence, applying Corollary 4.4.6 (ii) to the functions f ∈ L∞(Rn) and φε ◦ τh−φε ∈ L1(Rn), we get

|(f ∗ φε)(x+ h)− (f ∗ φε)(x)| = |(f ∗ (φε ◦ τh − φε))(x)| ≤ ∥f∥L∞∥φε ◦ τh − φε∥L1 ,
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which converges to 0 as h → 0 thanks to Exercise 13.5. This proves that f ∗ φε is continuous.

Given δ > 0, by continuity of f at x0, there exists r > 0 such that |f(x0 − y) − f(x0)| < δ for all
|y| < r. Hence, using that

∫
Rn φε = 1, we get

|(f ∗ φε)(x0)− f(x0)| ≤
∫
Rn

|f(x0 − y)− f(x0)|φε(y)dy

=

∫
{|y|<r}

|f(x0 − y)− f(x0)|φε(y)dy +

∫
{|y|≥r}

|f(x0 − y)− f(x0)|φε(y)dy

≤ δ + 2∥f∥L∞

∫
{|y|≥r}

φε(y)dy.

The RHS can be made smaller than 2δ by the second property of an approximation of the identity.
This concludes the proof by arbitrariness of δ.

(c) If f ∈ L∞(Rn) is uniformly continuous, then f ∗ φε
L∞
−−→ f as ε → 0+.

Solution: The solution works the same as the one of part (b) using that, given δ > 0, there exists
r > 0 such that |f(x− y)− f(x)| < δ for all |y| < r, where r does not depend on x.

(d) If 1 ≤ p < +∞ and f ∈ Lp(Rn), then f ∗ φε
Lp

−→ f as ε → 0+.

Hint: use Hölder’s inequality and keep in mind Exercise 13.5 and part (b).

Solution: First note that, by Corollary 4.4.6 (ii), f ∗ φε ∈ Lp(Rn). Now, using that
∫
Rn φε = 1

and Hölder inequality, we get

|(f ∗ φε)(x)− f(x)|p ≤
∣∣∣∣∫

Rn

(f(x− y)− f(x))φε(y)dy

∣∣∣∣p
=

∣∣∣∣∫
Rn

(f(x− y)− f(x))φε(y)
1/pφε(y)

1/p′dy

∣∣∣∣p
≤
(∫

Rn

|f(x− y)− f(x)|pφε(y)dy

)(∫
Rn

φε(y)dy

)p/p′

=

∫
Rn

|f(x− y)− f(x)|pφε(y)dy.

Then we integrate over Rn and use Tonelli’s theorem to get∫
Rn

|(f ∗ φε)(x)− f(x)|pdx ≤
∫
Rn

∫
Rn

|f(x− y)− f(x)|pφε(y)dydx

=

∫
Rn

φε(y)

(∫
Rn

|f(x− y)− f(x)|pdx
)
dy =

∫
Rn

φε(y)∥f ◦ τ−y − f∥pLpdy.

Now denote by g : Rn → [0,+∞) the function g(y) = ∥f ◦ τ−y − f∥pLp . Observe that, by Exercise
13.5, the function g is continuous at 0. Moreover g(y) ≤ 2p∥f∥pLp , hence g ∈ L∞(Rn). Therefore we
can use part (b) to obtain that (g ∗ φε)(0) → g(0) = 0 as ε → 0. However note that this concludes
the proof since

∫
Rn φε(y)∥f ◦ τ−y − f∥pLpdy = (g ∗ φε)(0).

Exercise 13.7.
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Compute the following limits:

(a)

lim
n→∞

∫ 1

0

1 + nx

(1 + x)n
dx.

Solution: It is clear that the constant function 1, which is summable on [0, 1], dominates the
sequence. Moreover, for all x > 0 the integrand tends to 0 as n → ∞. Therefore, by the dominated
convergence theorem,

lim
n→∞

∫ 1

0

1 + nx

(1 + x)n
dx =

∫ 1

0
lim
n→∞

1 + nx

(1 + x)n
dx =

∫ 1

0
0 dx = 0.

(b)

lim
n→∞

∫ 1

0

x log x

1 + n2x2
dx.

Solution: The integrand is clearly bounded above by the function x| log x|, which is bounded on
(0, 1) and therefore summable. Moreover, the sequence of integrands tends to 0 away from x = 0.
Therefore, as above, the limit of the integrals is 0.

Exercise 13.8.
Let I = [0, 1] and consider the function

f : I3 → [0,∞], f(x, y, z) :=

{
1√
|y−z|

, if y ̸= z,

∞, if y = z.

Show that f ∈ L1(I3,L3).

Solution: Note that f ≥ 0 and that f is continuous outside the closed set {y = z}. This shows
that f is Lebesgue-measurable. This allows us to apply Tonelli’s theorem twice:∫

I3
f(x, y, z)dL3(x, y, z) =

∫
I

(∫
I2
f(x, y, z)dL2(y, z)

)
dL1(x)

=

∫
I

(∫
I

(∫
I
f(x, y, z)dL1(y)

)
dL1(z)

)
dL1(x).

Now we compute the inner integral for x, z fixed:∫
I
f(x, y, z) dL1(y) =

∫
I\{z}

1√
|y − z|

dL1(y)

=

∫ z

0

1√
z − y

dL1(y) +

∫ 1

z

1√
y − z

dL1(y)

=
[
−2

√
z − y

]y=z

y=0
+
[
2
√
y − z

]y=1

y=z

= 2
√
z + 2

√
1− z.
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Therefore for each x ∈ I we have∫
I2
f(x, y, z) dL2(y, z) =

∫
I
2
√
z + 2

√
1− z dL1(z) =

8

3
,

and finally we get∫
I3
|f(x, y, z)| dL3(x, y, z) =

∫
I3
f(x, y, z) dL3(x, y, z) =

∫
I

8

3
dL1(x) =

8

3
< ∞,

which shows that f ∈ L1(I3,L3).

Exercise 13.9. ⋆
The goal of this exercise is to construct an L1-measurable set A ⊂ [0, 1] with the property
that both

L1(U ∩ A) > 0 and L1(U \ A) > 0 (∗)

for every nonempty open subset U ⊂ [0, 1].

(a) Show that it is enough to check (∗) for dyadic intervals U , that is, for sets U of the form
U = (m2−j, (m+ 1)2−j) with integers j ≥ 1 and 0 ≤ m < 2j.

Solution: Let U be an arbitrary nonempty open set in [0, 1]. Then it contains a dyadic interval
I = (m2−j , (m+ 1)2−j), so that

L1(U ∩A) ≥ L1(I ∩A) > 0 and L1(U \A) ≥ L1(I \A) > 0.

The idea of the proof will be to modify iteratively our set by small amounts, so that its
measure in all dyadic intervals of smaller and smaller sizes is controlled from above and
below. This is the main construction that we will need in the iteration:

(b) Show that given any measurable set E ⊂ [0, 1], any integer k ≥ 1 and any real number
0 < β ≤ 2−(k+1), one can find a measurable set B ⊂ [0, 1] such that

L1((m2−k, (m+ 1)2−k) ∩B) ≥ β and L1((m2−k, (m+ 1)2−k) \B) ≥ β (1)

for m = 0, 1, . . . , 2k − 1, and
L1(E △B) ≤ 2kβ. (2)

Solution: We will modify the set E in each of the intervals Im := (m2−k, (m+ 1)2−k) by adding
or subtracting to it a set of measure at most β, depending on whether λm := L1(Im ∩ E) is too
large or too small.

More precisely, for eachm ∈ {0, 1, . . . , 2k−1}, we construct a set Bm ⊂ Im with L1(Bm△(E∩Im)) ≤
β satisfying (1) for the corresponding m. In order to do that, we distinguish three cases:
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• If L1(Im \ E) = 2−k − λm < β (“E is too large”), this means that 2−k − β < λm, so using
Exercise 3.1 we can find a measurable set Bm ⊂ Im ∩ E with L1(Bm) = 2−k − β. Then
L1(Im \Bm) = β, L1(Im ∩Bm) = 2−k − β ≥ β, and also

L1(Im ∩ (E △Bm)) = L1(Im ∩ E \Bm) = L1(Im ∩ E)− L1(Bm)

= λm − (2−k − β) = β − (2−k − λm) ≤ β.

• If L1(Im ∩ E) < β (“E is too small”) we argue similarly but with the complement of E.

• If none of the above strict inequalities holds, then we can take Bm = Im ∩ E.

Finally choosing B := B0 ∪ · · · ∪B2k−1 the two properties (1) and (2) are easily satisfied.

Let us now fix a sequence of positive real numbers β1, β2, . . . satisfying the following condition:

∀k ≥ 1 2−(k+1) ≥ βk > 2k+1βk+1 + 2k+2βk+2 + 2k+3βk+3 + · · · . (C)

We construct inductively using part (b) a sequence of measurable sets A0, A1, A2, . . . ⊂ [0, 1]
with A0 = ∅ satisfying the following two properties:

L1((m2−k, (m+ 1)2−k) ∩ Ak) ≥ βk and L1((m2−k, (m+ 1)2−k) \ Ak) ≥ βk

for m = 0, 1, . . . , 2k − 1, and
L1(Ak−1 △ Ak) ≤ 2kβk.

(c) Show that there exists a measurable set A ⊂ [0, 1] such that L1(Ak △A) → 0 as k → ∞.

Hint: Use the completeness of L1.

Solution: Let fk := χAk
and observe that ∥fj − fk∥L1 = L1(Aj △ Ak). We claim that this is a

Cauchy sequence: for j < k,

∥fj − fk∥L1 ≤ ∥fj − fj+1∥L1 + ∥fj+1 − fj+2∥L1 + · · ·+ ∥fk−1 − fk∥L1

= L1(Aj △Aj+1) + L1(Aj+1 △Aj+2) + · · ·+ L1(Ak−1 △Ak)

≤ 2j+1βj+1 + 2j+2βj+2 + · · ·+ 2kβk

≤
∞∑

ℓ=j+1

2ℓβℓ
j→∞−−−−→ 0

because the sum is finite, thanks to condition (C) with k = 1. Thus {fk} converges in L1 to a
measurable function f by the completeness of L1([0, 1]). In particular, a subsequence fkj converges
pointwise to f almost everywhere, thus f can only take the values 0 and 1 and hence can be written
as f = χA for a measurable set A. Finally

L1(Ak △A) = ∥fk − f∥L1
k→∞−−−−→ 0.

(d) Show that (∗) holds for this set A and any dyadic interval U .
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Solution: Let U = (m2−k, (m+ 1)2−k) and consider j > k. Then

L1(U ∩Aj) ≥ L1(U ∩Ak)− L1(Ak △Aj)

≥ L1(U ∩Ak)−
(
L1(Ak △Ak+1) + · · ·+ L1(Aj−1 △Aj)

)
≥ βk −

(
2k+1βk+1 + · · ·+ 2jβj

)
.

(These computations are just the application of the triangle inequality to χAj .) Letting j → ∞ the
left hand side converges to L1(U ∩A), so using condition (C) we get

L1(U ∩A) ≥ βk −
(
2k+1βk+1 + 2k+2βk+2 + · · ·

)
> 0.

The same argument applied to the complement of A shows the second inequality.

(e) To complete the proof, show that if we choose βk = 2−3k , then condition (C) holds.

Solution: Clearly 2−3k ≤ 2−(k+1) for k ≥ 1. For the second inequality of (C), we claim that

2k+j · 2−3k+j
< 2−3k−j . This shows the inequality:

∞∑
j=1

2k+j · 2−3k+j
<

∞∑
j=1

2−3k−j = 2−3k
∞∑
j=1

2−j = 2−3k .

The claim follows by a simple argument: k + j − 3k+j < −3k − j ⇐⇒ k + 2j + 3k < 3k+j clearly
holds for j = 1 and every k ≥ 1, and for higher values of j it follows by induction.
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