1. Multiple choice There is only one correct answer in each question.
(a) In which open set the following power series defines a holomorphic function?

$$
\sum_{n=0}^{+\infty} \frac{e^{i n} i^{3 n}}{2 n^{2}+1 / n!} z^{n}
$$

$\bigcirc\{z \in \mathbb{C}:-1 / 2<\Im(z)<1 / 2\}$.
$\bigcirc\{z \in \mathbb{C}:|z|<1\}$.
$\bigcirc\{z \in \mathbb{C}: 1<|z|<2\}$
(b) Which of the following functions is not meromorphic?
$\bigcirc \sin (z)$.
$\bigcirc \frac{1}{\sin (z)}$.
$\bigcirc \frac{z^{3}}{z^{4}+1}$.
$\bigcirc \sin (1 / z)$.
(c) Which $\Omega \subset \mathbb{C}$ is not biholomorphic to the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$?
$\Omega=\{z \in \mathbb{C}: \Re(z)>0\}$.
$\Omega=\left\{z \in \mathbb{C}:|z|<\Re(z)^{2}+1\right\}$.
$\bigcirc \Omega=\mathbb{C} \backslash\{0\}$.
$\bigcirc=\mathbb{C}$.
(d) Consider the singularity of $f(z)=\frac{\sin (z) \cos (1 / z)}{(\pi-z)^{2023}}$ in $z=z_{0}=\pi$. Then, z_{0} isa pole of order 2022.
\bigcirc a removable singularity.
\bigcirc a pole of order 2023.
\bigcirc an essential singularity.
(e) Let $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, and $f: \mathbb{D} \rightarrow \mathbb{C}$ holomorphic. Which assertion does not imply that f is constant?
$\bigcirc|f(z)| \leq|f(i / 4)|$ for all $z \in \mathbb{D}$.
$\bigcirc f(0)=0, f^{\prime}(0)=0$.
$f(1 /(2 n))=1$, for all $n \in \mathbb{N}$.
$\bigcirc \int_{\{|z|=1 / 2\}} \frac{f(z)}{z^{k}} d z=0$ for all $k \in \mathbb{N}$.
(f) Let \log be the principal branch of the logarithm, and γ the positively oriented $\operatorname{arc}\left\{e^{i t}: t \in[0, \pi / 2]\right\}$. What is the value of

$$
\int_{\gamma} \log \left(z^{2}\right) d z
$$

equal to?
$2 i$$\pi+2-i$$\pi-2+2 i$$2-2 i-\pi$.
(g) How many zeros has the polynomial $p(z)=z^{5}+5 z-\pi$ inside the annulus $\{z \in \mathbb{C}: 1<|z|<2\}$?
O 2.
4.3.5.

In the following exercises, please justify all steps.

2. Consider the meromorphic function

$$
f(z)=\frac{\sin (\pi z)}{z\left(z^{2}+1\right)}
$$

(a) Find the zeros of f and their order.
(b) Find the poles of f and their order.
(c) Compute the integral

$$
\int_{\gamma} f d z
$$

when γ is the circle of radius 3 centered in i positively oriented.
3. Compute the following real integral

$$
\int_{-\infty}^{+\infty} \frac{\cos (\sqrt{2} t)}{t^{4}+1} d t
$$

Hint: Write this as a complex integral, and consider a contour parametrizing the boundary of a half disc.
4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic and injective, with $f(0)=0$.
(a) Show that for every $r>0$ there exists $\varepsilon>0$ such that $|f(z)|>\varepsilon$ for every $z \in \mathbb{C}$ satisfying $|z| \geq r$.
(b) Show that the singularity at zero of the function

$$
g: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, \quad g(z):=f\left(\frac{1}{z}\right)
$$

is a pole.
(c) Conclude that f is a complex polynomial, and therefore $f(z)=c z$ for some $c \in \mathbb{C} \backslash\{0\}$.

Hints: For part (a) take advantage of the Open Mapping Theorem. For part (b) take advantage of the Casorati-Weierstrass and Liouville Theorems.
5. Let $\Omega \subset \mathbb{C}$ be an open and connected set containing the origin, and f : $\Omega \backslash\{0\} \rightarrow \mathbb{C}$ holomorphic. Suppose that there exists a sequence $\left(z_{n}\right)$ in Ω such that $\lim _{n \rightarrow+\infty} z_{n}=0$ and

$$
\left|f\left(z_{n}\right)\right| \leq e^{-1 /\left|z_{n}\right|}
$$

for all $n \in \mathbb{N}$.
(a) Prove that f has a removable singularity in zero if and only if f is constantly equal to zero in Ω.
(b) Deduce that f is either a constant, or it has an essential singularity in zero.

