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1. Multiple choice There is only one correct answer in each question.

(a) In which open set the following power series defines a holomorphic function?
+∞∑
n=0

eini3n

2n2 + 1/n!z
n.

⃝ {z ∈ C : −1/2 < ℑ(z) < 1/2}.

⃝ C.

⃝ {z ∈ C : |z| < 1}.

⃝ {z ∈ C : 1 < |z| < 2}

(b) Which of the following functions is not meromorphic?

⃝ sin(z).

⃝ z3

z4+1 .

⃝ 1
sin(z) .

⃝ sin(1/z).

(c) Which Ω ⊂ C is not biholomorphic to the unit disk D = {z ∈ C : |z| < 1}?

⃝ Ω = {z ∈ C : ℜ(z) > 0}.

⃝ Ω = C \ {0}.

⃝ Ω = {z ∈ C : |z| < ℜ(z)2 + 1}.

⃝ Ω = C.

(d) Consider the singularity of f(z) = sin(z) cos(1/z)
(π−z)2023 in z = z0 = π. Then, z0 is

⃝ a pole of order 2022.

⃝ a pole of order 2023.

⃝ a removable singularity.

⃝ an essential singularity.

(e) Let D := {z ∈ C : |z| < 1}, and f : D → C holomorphic. Which assertion does
not imply that f is constant?

⃝ |f(z)| ≤ |f(i/4)| for all z ∈ D.

⃝ f(1/(2n)) = 1, for all n ∈ N.

⃝ f(0) = 0, f ′(0) = 0.

⃝
∫

{|z|=1/2}
f(z)
zk dz = 0 for all k ∈ N.

(f) Let log be the principal branch of the logarithm, and γ the positively oriented
arc {eit : t ∈ [0, π/2]}. What is the value of∫

γ
log(z2) dz

equal to?
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⃝ 2i.

⃝ π − 2 + 2i.

⃝ π + 2 − i.

⃝ 2 − 2i − π.

(g) How many zeros has the polynomial p(z) = z5 + 5z − π inside the annulus
{z ∈ C : 1 < |z| < 2}?

⃝ 2.

⃝ 3.

⃝ 4.

⃝ 5.

In the following exercises, please justify all steps.

2. Consider the meromorphic function

f(z) = sin(πz)
z(z2 + 1) .

(a) Find the zeros of f and their order.

(b) Find the poles of f and their order.

(c) Compute the integral∫
γ

f dz,

when γ is the circle of radius 3 centered in i positively oriented.

3. Compute the following real integral

∫ +∞

−∞

cos(
√

2t)
t4 + 1 dt.

Hint: Write this as a complex integral, and consider a contour parametrizing the
boundary of a half disc.

4. Let f : C → C holomorphic and injective, with f(0) = 0.

(a) Show that for every r > 0 there exists ε > 0 such that |f(z)| > ε for every z ∈ C
satisfying |z| ≥ r.
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(b) Show that the singularity at zero of the function

g : C \ {0} → C, g(z) := f
(1

z

)
,

is a pole.

(c) Conclude that f is a complex polynomial, and therefore f(z) = cz for some
c ∈ C \ {0}.

Hints: For part (a) take advantage of the Open Mapping Theorem. For part (b) take
advantage of the Casorati-Weierstrass and Liouville Theorems.

5. Let Ω ⊂ C be an open and connected set containing the origin, and f :
Ω \ {0} → C holomorphic. Suppose that there exists a sequence (zn) in Ω such that
limn→+∞ zn = 0 and

|f(zn)| ≤ e−1/|zn|,

for all n ∈ N.

(a) Prove that f has a removable singularity in zero if and only if f is constantly
equal to zero in Ω.

(b) Deduce that f is either a constant, or it has an essential singularity in zero.
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