1. Multiple choice There is only one correct answer in each question.

(a) In which open set the following power series defines a holomorphic function?

$$\sum_{n=0}^{+\infty} \frac{e^{in} i^{3n}}{2n^2 + 1/n!} z^n.$$

$$\bigcirc \{z \in \mathbb{C} : -1/2 < \Im(z) < 1/2\}.$$

$$\bigcirc \{z \in \mathbb{C} : |z| < 1\}.$$

$$\bigcirc \{z \in \mathbb{C} : 1 < |z| < 2\}$$

(b) Which of the following functions is *not* meromorphic?

 $\bigcirc \sin(z). \qquad \bigcirc \frac{1}{\sin(z)}.$ $\bigcirc \frac{z^3}{z^4+1}. \qquad \bigcirc \sin(1/z).$

(c) Which $\Omega \subset \mathbb{C}$ is *not* biholomorphic to the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$?

 $\bigcirc \ \Omega = \{z \in \mathbb{C} : \Re(z) > 0\}. \qquad \bigcirc \ \Omega = \{z \in \mathbb{C} : |z| < \Re(z)^2 + 1\}.$ $\bigcirc \ \Omega = \mathbb{C} \setminus \{0\}. \qquad \bigcirc \ \Omega = \mathbb{C}.$

(d) Consider the singularity of $f(z) = \frac{\sin(z)\cos(1/z)}{(\pi-z)^{2023}}$ in $z = z_0 = \pi$. Then, z_0 is

- \bigcirc a pole of order 2022. \bigcirc a removable singularity.
- \bigcirc a pole of order 2023. \bigcirc an essential singularity.

(e) Let $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, and $f : \mathbb{D} \to \mathbb{C}$ holomorphic. Which assertion does *not* imply that f is constant?

 $(f(z)) \leq |f(i/4)| \text{ for all } z \in \mathbb{D}.$ (f(z)) = 0, f'(0) = 0, f'(0) = 0. $(f(1/(2n))) = 1, \text{ for all } n \in \mathbb{N}.$ (f(z)) = 0, f'(0) = 0. (f(z)) = 0, f'(0) = 0. (f(z)) = 0, f'(0) = 0. (f(z)) = 0, f'(0) = 0.

(f) Let log be the principal branch of the logarithm, and γ the positively oriented arc $\{e^{it}: t \in [0, \pi/2]\}$. What is the value of

 $\int_{\gamma} \log(z^2) \, dz$

equal to?

December 12, 2023

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Mock Exam	Prof. Dr. Ö. Imamoglu
$\bigcirc 2i.$	$\bigcirc \pi + 2 - i.$	

 $\bigcirc 2-2i-\pi.$

(g) How many zeros has the polynomial $p(z) = z^5 + 5z - \pi$ inside the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$?

\bigcirc 2.	○ 4.
○ 3.	\bigcirc 5.

In the following exercises, please justify all steps.

2. Consider the meromorphic function

$$f(z) = \frac{\sin(\pi z)}{z(z^2 + 1)}.$$

- (a) Find the zeros of f and their order.
- (b) Find the poles of f and their order.
- (c) Compute the integral

$$\int_{\gamma} f \, dz,$$

 $\bigcirc \pi - 2 + 2i.$

when γ is the circle of radius 3 centered in *i* positively oriented.

3. Compute the following real integral

$$\int_{-\infty}^{+\infty} \frac{\cos(\sqrt{2}t)}{t^4 + 1} \, dt.$$

Hint: Write this as a complex integral, and consider a contour parametrizing the boundary of a half disc.

4. Let $f : \mathbb{C} \to \mathbb{C}$ holomorphic and injective, with f(0) = 0.

(a) Show that for every r > 0 there exists $\varepsilon > 0$ such that $|f(z)| > \varepsilon$ for every $z \in \mathbb{C}$ satisfying $|z| \ge r$.

December 12, 2023

2/3

(b) Show that the singularity at zero of the function

$$g: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \quad g(z) := f\left(\frac{1}{z}\right),$$

is a pole.

(c) Conclude that f is a complex polynomial, and therefore f(z) = cz for some $c \in \mathbb{C} \setminus \{0\}$.

Hints: For part (a) take advantage of the Open Mapping Theorem. For part (b) take advantage of the Casorati-Weierstrass and Liouville Theorems.

5. Let $\Omega \subset \mathbb{C}$ be an open and connected set containing the origin, and $f : \Omega \setminus \{0\} \to \mathbb{C}$ holomorphic. Suppose that there exists a sequence (z_n) in Ω such that $\lim_{n \to +\infty} z_n = 0$ and

$$|f(z_n)| \le e^{-1/|z_n|},$$

for all $n \in \mathbb{N}$.

(a) Prove that f has a removable singularity in zero if and only if f is constantly equal to zero in Ω .

(b) Deduce that f is either a constant, or it has an essential singularity in zero.