1. Multiple choice Only one correct answer each question.

(a) In which open set is the following power series defining an holomorphic function?

$$\sum_{n=0}^{+\infty} \frac{e^{in} i^{3n}}{2n^2 + 1/n!} z^n.$$

$$\bigcirc \{z \in \mathbb{C} : -1/2 < \Im(z) < 1/2\}. \qquad \bullet \{z \in \mathbb{C} : |z| < 1\}.$$

$$\bigcirc \mathbb{C}. \qquad \bigcirc \{z \in \mathbb{C} : 1 < |z| < 2\}$$

SOL: We compute the radius of convergence ρ of the power series as

$$\rho^{-1} = \lim_{n \to +\infty} \left| \frac{2n^2 + 1/n!}{2(n+1)^2 + 1/(n+1)!} \right| = \lim_{n \to +\infty} \left| \frac{2n^2}{2(n+1)^2} \right| = 1.$$

(b) Which of the following functions is *not* meromorphic?

$$\bigcirc \sin(z). \qquad \bigcirc \frac{1}{\sin(z)}.$$
$$\bigcirc \frac{z^3}{z^4+1}. \qquad \bullet \sin(1/z)$$

SOL: The point z = 0 is an essential singularity of sin(1/z), and hence this function cannot be meromorphic.

(c) Which $\Omega \subset \mathbb{C}$ it is *not* biholomorphic to the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$?

 $\bigcirc \ \Omega = \{z \in \mathbb{C} : \Re(z) > 0\}. \qquad \bigcirc \ \Omega = \{z \in \mathbb{C} : |z| < \Re(z)^2 + 1\}.$ $\bigcirc \ \Omega = \mathbb{C} \setminus \{0\}. \qquad \bullet \ \Omega = \mathbb{C}.$

SOL: This is not possible by Liouville's Theorem: if $f : \mathbb{C} \to \mathbb{D}$ is holomorphic, then $|f(z)| \leq 1$ for all $z \in \mathbb{C}$, and hence f has to be a constant.

- (d) Consider the singularity of $f(z) = \frac{\sin(z)\cos(1/z)}{(\pi-z)^{2023}}$ in $z = z_0 = \pi$. Then, z_0 is

 - \bigcirc a pole of order 2023. \bigcirc an essential singularity.

SOL: Taking advantage of the Tayolor series of $\sin(z)$ and $\cos(1/z)$ in π we get that

$$\frac{\sin(z)\cos(1/z)}{(\pi-z)^{2023}} = (\pi-z)^{-2023}((z-\pi)+O((z-\pi)^2))(\cos(1/\pi)+O(z-\pi))$$
$$= -\cos(1/\pi)(\pi-z)^{-2022}+O((z-\pi)^{-2021}).$$

Hence, the pole is of order 2022.

January 3, 2024

(e) Let $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, and $f : \mathbb{D} \to \mathbb{C}$ holomorphic. Which assertion does not imply that f is constant?

 $\bigcirc |f(z)| \leq |f(i/4)|$ for all $z \in \mathbb{D}$. • f(0) = 0, f'(0) = 0. $\bigcirc \int_{\{|z|=1/2\}} \frac{f(z)}{z^k} dz = 0 \text{ for all } k \in \mathbb{N}.$ $\bigcirc f(1/(2n)) = 1$, for all $n \in \mathbb{N}$.

SOL: Consider for instance $f(z) = z^2$.

(f) Let log be the principal branch of the logarithm, and γ the positively oriented arc $\{e^{it} : t \in [0, \pi/2]\}$. What is the value of

$$\int_{\gamma} \log(z^2) \, dz$$

equal to?

$$\bigcirc 2i. \qquad \bigcirc \pi + 2 - i.$$
$$\bigcirc \pi - 2 + 2i. \qquad \bullet 2 - 2i - \pi$$

SOL: We compute

$$\int_{\gamma} \log(z^2) \, dz = \int_0^{\pi/2} \log(e^{2it}) i e^{it} \, dt = -\int_0^{\pi/2} 2t e^{it} \, dt = 2 - 2i - \pi.$$

(g) How many zeros has the polynomial $p(z) = z^5 + 5z - \pi$ inside the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}?$

SOL: We apply Rouché Theorem first for |z| = 1:

 $|5z| = 5 > \pi + 1 > |z^5 - \pi|,$

and after for |z| = 2:

 $|z^5| = 32 > 10 + \pi > |5z - \pi|.$

The number of zeros in the annulus are then 5 - 1 = 4.

January 3, 2024

2/7

2. Open question Consider the meromorphic function

$$f(z) = \frac{\sin(\pi z)}{z(z^2 + 1)}.$$

(a) Find the zeros of f and their order.

SOL: The zeros of $\sin(\pi z)$ are exactly $z = k \in \mathbb{Z}$. When $k \neq 0$, f(k) = 0, and the order of this zero is one since

$$f'(k) = \frac{\pi \cos(\pi k)k(k^2 + 1)}{(k(k^2 + 1))^2} \neq 0.$$

The value k = 0 however is not a zero of f, but a removable singularity: in fact notice that

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\pi z + O(z^3)}{z(z^2 + 1)} = \pi z$$

(b) Find the poles of f and their order.

SOL: As we showed in the previous point, z = 0 is not a pole, but a removable singularity. The poles of f are at z = i and z = -i. They are of order one since (z+1) = (z-i)(z+i), and the limits $\lim_{z\to i}(z-i)f(z)$ and $\lim_{z\to -i}(z+i)f(z)$ are finite.

(c) Compute the integral

$$\int_{\gamma} f \, dz,$$

when γ is the circle of radius 3 centered in *i* positively oriented.

SOL: We first compute the residues of f at i and -i:

$$\operatorname{res}_{i}(f) = \lim_{z \to i} (z - i)f(z) = -\frac{\sin(i\pi)}{2}, \qquad \operatorname{res}_{-i}(f) = \lim_{z \to -i} (z + i)f(z) = \frac{\sin(i\pi)}{2}.$$

Since both poles are in the interior of γ , by the residue theorem

$$\int_{\gamma} f \, dz = \operatorname{res}_i(f) + \operatorname{res}_{-i}(f) = 0.$$

3. Open question Compute the following real integral

$$\int_{-\infty}^{+\infty} \frac{\cos(\sqrt{2t})}{t^4 + 1} \, dt.$$

January 3, 2024

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Mock Exam – Solutions	Prof. Dr. Ö. Imamoglu

Hint: Write this as a complex integral, and consider a contour parametrizing the boundary a half disc.

SOL: Let R > 1 be fixed, and define γ_R to be the curve parametrizing the boundary of the half disc $\{z \in \mathbb{C} : |z| < R, \Im(z) > 0\}$ with positive orientation, and A_R the arc $\{Re^{i\theta} : \theta \in (0,\pi)\}$. We notice that

$$\int_{-R}^{+R} \frac{\cos(\sqrt{2}t)}{t^4 + 1} dt = \Re\left(\int_{\gamma_R} \frac{e^{i\sqrt{2}z}}{z^4 + 1} dz - \int_{A_R} \frac{e^{i\sqrt{2}z}}{z^4 + 1} dz\right).$$

We treat the two integrals in the right hand side separately: first of all notice that

$$\left| \int_{A_R} \frac{e^{i\sqrt{2}z}}{z^4 + 1} \, dz \right| = \left| \int_0^\pi \frac{e^{i\sqrt{2}Re^{i\theta}}Rie^{i\theta}}{R^4 e^{4i\theta} + 1} \, d\theta \right| \le \frac{R\pi}{(R^4 - 1)} \max_{\theta \in [0,\pi]} |e^{i\sqrt{2}Re^{i\theta}}|.$$

Notice now that

$$|e^{i\sqrt{2}Re^{i\theta}}| = |e^{i\sqrt{2}R(\cos(\theta) + i\sin(\theta))}| = |e^{-\sqrt{2}R\sin(\theta)}| \le 1,$$

for $\theta \in [0, \pi]$. This proves that

$$\lim_{R \to +\infty} \left| \int_{A_R} \frac{e^{i\sqrt{2}z}}{z^4 + 1} \, dz \right| \le \lim_{R \to +\infty} \frac{R\pi}{R^4 - 1} = 0$$

We compute the second integral via the Residue Theorem: notice that γ_R contains two poles of order one of $f(z) = \frac{e^{i\sqrt{2}z}}{z^4+1}$, namely $(z_1, z_2) = ((1+i)/\sqrt{2}, (-1+i)/\sqrt{2})$. Their residues are

$$\operatorname{res}_{z_1} f = -\frac{(1+i)e^{i-1}}{4\sqrt{2}},$$

and

$$\operatorname{res}_{z_2} f = \frac{(1-i)e^{-i-1}}{4\sqrt{2}}.$$

Hence,

$$\int_{\gamma_R} \frac{\cos(\sqrt{2}z)}{z^4 + 1} dz = 2\pi i \left(\operatorname{res}_{z_1} f + \operatorname{res}_{z_2} f \right)$$
$$= \frac{\pi i}{2\sqrt{2}} \left((1 - i)e^{-i-1} - (1 + i)e^{i-1} \right)$$
$$= \frac{\pi}{\sqrt{2}e} (\sin(1) + \cos(1)).$$

January 3, 2024

4/7

This proves that

$$\int_{-\infty}^{+\infty} \frac{\cos(\sqrt{2}t)}{t^4 + 1} dt = \lim_{R + \infty} \int_{-R}^{+R} \frac{\cos(\sqrt{2}t)}{t^4 + 1} dt = \Re\left(\frac{\pi}{\sqrt{2}e}(\sin(1) + \cos(1))\right)$$
$$= \frac{\pi}{\sqrt{2}e}(\sin(1) + \cos(1)).$$

4. Open question Let $f : \mathbb{C} \to \mathbb{C}$ holomorphic and injective, with f(0) = 0.

(a) Show that for every r > 0 there exists $\varepsilon > 0$ such that $|f(z)| > \varepsilon$ for every $z \in \mathbb{C}$ satisfying $|z| \ge r$.

SOL: For $\rho > 0$, we denote $B_{\rho} := \{z \in \mathbb{C} : |z| < \rho\}$. Now, let r > 0. By the Open Mapping Theorem $f(B_r)$ is open and contains the origin since f(0) = 0. Therefore, there exists a neighbourhood of the origin in the form $B_{\varepsilon} \subset f(B_r)$ for some $\varepsilon > 0$ small enough. Let now $z \in \mathbb{C} \setminus B_r$, that is $|z| \ge r$. Since f is injective, $f(z) \notin f(B_r)$, so in particular $f(z) \notin B_{\varepsilon}$, proving that $|f(z)| > \varepsilon$ as wished.

(b) Show that the singularity at zero of the function

$$g: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \quad g(z) := f\left(\frac{1}{z}\right),$$

is a pole.

SOL: We have to prove that zero is neither an essential singularity, nor a removable singularity of f. Suppose by contradiction that zero is an essential singularity of g. Then, by Casorati-Weierstrass for every $\rho > 0$, $g(B_{\rho} \setminus \{0\})$ is dense in \mathbb{C} . This contradicts part (a) taking $r = 1/\rho$ since there exists $\varepsilon > 0$ such that

$$g(B_{\rho} \setminus \{0\}) = f(\mathbb{C} \setminus B_{1/\rho})$$

does not contain the ball B_{ε} , and hence it cannot be dense in \mathbb{C} . On the other hand, if zero is a removable singularity, then it follows that g extends to a bounded function from \mathbb{C} to \mathbb{C} , and hence it must be constant by Liouville's Theorem, contradicting the injectivity of f.

(c) Conclude that f is a complex polynomial, and therefore f(z) = cz for some $c \in \mathbb{C} \setminus \{0\}$.

SOL: Since f is holomorphic, it can be expressed as

$$f(z) = \sum_{n=1}^{+\infty} a_n z^n,$$

January 3, 2024

in every ball around the origin. Let $k \in \mathbb{N}$ be the order of the pole of g in zero. By definition,

$$g(z) = f(1/z) = \sum_{n=1}^{+\infty} a_n z^{-n}.$$

On the other side, letting $k \in \mathbb{N}$ the order of the pole of g, we have that the coefficients a_{k+1}, a_{k+2}, \ldots must be equal to zero, and $a_k \neq 0$, since the principal part of g is of order k. This proves that

$$f(z) = a_1 z + \dots a_k z^k.$$

If k = 1 we are done. Otherwise, we have by the Fundamental Theorem of Algebra that there exists $w \in \mathbb{C}$ such that f(z) = w has more than a unique solution, contradicting the injectivity of f.

Hints: For part (a) take advantage of the Open Mapping Theorem. For part (b) take advantage of the Casorati-Weierstrass and Liouville Theorems.

5. Open question Let $\Omega \subset \mathbb{C}$ be an open and connected set containing the origin, and $f : \Omega \setminus \{0\} \to \mathbb{C}$ holomorphic. Suppose that there exists a sequence (z_n) in Ω such that $\lim_{n\to+\infty} z_n = 0$ and

$$|f(z_n)| \le e^{-1/|z_n|},$$

for all $n \in \mathbb{N}$.

(a) Prove that f has a removable singularity in zero if and only if f is constantly equal to zero in Ω .

SOL: One direction is clear $(f \equiv 0 \Rightarrow f$ has a removable singularity in zero). Let us prove: f has a removable singularity in zero then $f \equiv 0$. By continuity the value of the extension of f in zero is equal to

$$f(0) = \lim_{n \to +\infty} f(z_n) = 0,$$

since $|f(z_n)| \leq e^{-1/|z_n|} \to 0$. If the order of this zero is infinite, then $f \equiv 0$, and we are done. Otherwise, let $k \in \mathbb{N}$ such that $\operatorname{ord}_0 f = k$. Then, by definition, there exists gholomorphic in a neighbourhood $U \subset \Omega$ of zero such that $g(0) \neq 0$ and $f(z) = z^k g(z)$. Let now N > 0 big enough so that $z_n \in U$ for all $n \geq N$. Then, from

$$|g(z_n)| = |z_n^{-k} f(z_n)| \le \frac{e^{-1/|z_n|}}{|z_n|^k}$$

we deduce that $g(0) = \lim_{n \to +\infty} g(z_n) = 0$ since the function $\lim_{t\to 0} e^{-1/|t|}/|t|^k = 0$ for all $k \in \mathbb{N}$. This is a contradiction with the definition of g, proving that $k = \infty$, and hence $f \equiv 0$.

January 3, 2024

6/7

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Mock Exam – Solutions	HS 2023

(b) Deduce that f is either a constant, or it has an essential singularity in zero.

SOL: Zero cannot be a pole of f since $\lim_{n\to+\infty} |f(z_n)| = 0 \neq \infty$. Therefore, if it is a removable singularity, then by part (a) $f \equiv 0$. The only option left is when zero is an essential singularity of f.