1. Multiple choice Only one correct answer each question.
(a) In which open set is the following power series defining an holomorphic function?
$\sum_{n=0}^{+\infty} \frac{e^{i n} i^{3 n}}{2 n^{2}+1 / n!} z^{n}$.
$\bigcirc\{z \in \mathbb{C}:-1 / 2<\Im(z)<1 / 2\}$.
 - $\{z \in \mathbb{C}:|z|<1\}$.
\mathbb{C}.
$\bigcirc\{z \in \mathbb{C}: 1<|z|<2\}$

SOL: We compute the radius of convergence ρ of the power series as

$$
\rho^{-1}=\lim _{n \rightarrow+\infty}\left|\frac{2 n^{2}+1 / n!}{2(n+1)^{2}+1 /(n+1)!}\right|=\lim _{n \rightarrow+\infty}\left|\frac{2 n^{2}}{2(n+1)^{2}}\right|=1 .
$$

(b) Which of the following functions is not meromorphic?
$\bigcirc \sin (z)$.
$\bigcirc \frac{1}{\sin (z)}$.
$\bigcirc \frac{z^{3}}{z^{4}+1}$.

- $\sin (1 / z)$.

SOL: The point $z=0$ is an essential singularity of $\sin (1 / z)$, and hence this function cannot be meromorphic.
(c) Which $\Omega \subset \mathbb{C}$ it is not biholomorphic to the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$?
$\Omega=\{z \in \mathbb{C}: \Re(z)>0\}$.
$\bigcirc \Omega=\left\{z \in \mathbb{C}:|z|<\Re(z)^{2}+1\right\}$.
$\bigcirc \Omega=\mathbb{C} \backslash\{0\}$.

- $\Omega=\mathbb{C}$.

SOL: This is not possible by Liouville's Theorem: if $f: \mathbb{C} \rightarrow \mathbb{D}$ is holomorphic, then $|f(z)| \leq 1$ for all $z \in \mathbb{C}$, and hence f has to be a constant.
(d) Consider the singularity of $f(z)=\frac{\sin (z) \cos (1 / z)}{(\pi-z)^{2023}}$ in $z=z_{0}=\pi$. Then, z_{0} is

- a pole of order 2022 .
\bigcirc a removable singularity.
O a pole of order 2023.
\bigcirc an essential singularity.

SOL: Taking advantage of the Tayolor series of $\sin (z)$ and $\cos (1 / z)$ in π we get that

$$
\begin{aligned}
\frac{\sin (z) \cos (1 / z)}{(\pi-z)^{2023}} & =(\pi-z)^{-2023}\left((z-\pi)+O\left((z-\pi)^{2}\right)\right)(\cos (1 / \pi)+O(z-\pi)) \\
& =-\cos (1 / \pi)(\pi-z)^{-2022}+O\left((z-\pi)^{-2021}\right)
\end{aligned}
$$

Hence, the pole is of order 2022.
(e) Let $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, and $f: \mathbb{D} \rightarrow \mathbb{C}$ holomorphic. Which assertion does not imply that f is constant?
$\bigcirc|f(z)| \leq|f(i / 4)|$ for all $z \in \mathbb{D}$.

- $f(0)=0, f^{\prime}(0)=0$.
$f(1 /(2 n))=1$, for all $n \in \mathbb{N}$.
$\bigcirc \int_{\{|z|=1 / 2\}} \frac{f(z)}{z^{k}} d z=0$ for all $k \in \mathbb{N}$.

SOL: Consider for instance $f(z)=z^{2}$.
(f) Let log be the principal branch of the logarithm, and γ the positively oriented $\operatorname{arc}\left\{e^{i t}: t \in[0, \pi / 2]\right\}$. What is the value of

$$
\int_{\gamma} \log \left(z^{2}\right) d z
$$

equal to?$2 i$.

$$
\pi+2-i
$$

$$
\bigcirc \pi-2+2 i
$$

- $2-2 i-\pi$.

SOL: We compute

$$
\int_{\gamma} \log \left(z^{2}\right) d z=\int_{0}^{\pi / 2} \log \left(e^{2 i t}\right) i e^{i t} d t=-\int_{0}^{\pi / 2} 2 t e^{i t} d t=2-2 i-\pi .
$$

(g) How many zeros has the polynomial $p(z)=z^{5}+5 z-\pi$ inside the annulus $\{z \in \mathbb{C}: 1<|z|<2\}$?
$\bigcirc 2$.

- 4.

$\bigcirc 3$.5.

SOL: We apply Rouché Theorem first for $|z|=1$:

$$
|5 z|=5>\pi+1 \geq\left|z^{5}-\pi\right|
$$

and after for $|z|=2$:

$$
\left|z^{5}\right|=32>10+\pi \geq|5 z-\pi|
$$

The number of zeros in the annulus are then $5-1=4$.
2. Open question Consider the meromorphic function

$$
f(z)=\frac{\sin (\pi z)}{z\left(z^{2}+1\right)}
$$

(a) Find the zeros of f and their order.

SOL: The zeros of $\sin (\pi z)$ are exactly $z=k \in \mathbb{Z}$. When $k \neq 0, f(k)=0$, and the order of this zero is one since

$$
f^{\prime}(k)=\frac{\pi \cos (\pi k) k\left(k^{2}+1\right)}{\left(k\left(k^{2}+1\right)\right)^{2}} \neq 0 .
$$

The value $k=0$ however is not a zero of f, but a removable singularity: in fact notice that

$$
\lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \frac{\pi z+O\left(z^{3}\right)}{z\left(z^{2}+1\right)}=\pi
$$

(b) Find the poles of f and their order.

SOL: As we showed in the previous point, $z=0$ is not a pole, but a removable singularity. The poles of f are at $z=i$ and $z=-i$. They are of order one since $(z+1)=(z-i)(z+i)$, and the limits $\lim _{z \rightarrow i}(z-i) f(z)$ and $\lim _{z \rightarrow-i}(z+i) f(z)$ are finite.
(c) Compute the integral

$$
\int_{\gamma} f d z,
$$

when γ is the circle of radius 3 centered in i positively oriented.
SOL: We first compute the residues of f at i and $-i$:

$$
\operatorname{res}_{i}(f)=\lim _{z \rightarrow i}(z-i) f(z)=-\frac{\sin (i \pi)}{2}, \quad \operatorname{res}_{-i}(f)=\lim _{z \rightarrow-i}(z+i) f(z)=\frac{\sin (i \pi)}{2}
$$

Since both poles are in the interior of γ, by the residue theorem

$$
\int_{\gamma} f d z=\operatorname{res}_{i}(f)+\operatorname{res}_{-i}(f)=0 .
$$

3. Open question Compute the following real integral

$$
\int_{-\infty}^{+\infty} \frac{\cos (\sqrt{2} t)}{t^{4}+1} d t
$$

Hint: Write this as a complex integral, and consider a contour parametrizing the boundary a half disc.

SOL: Let $R>1$ be fixed, and define γ_{R} to be the curve parametrizing the boundary of the half disc $\{z \in \mathbb{C}:|z|<R, \Im(z)>0\}$ with positive orientation, and A_{R} the arc $\left\{R e^{i \theta}: \theta \in(0, \pi)\right\}$. We notice that

$$
\int_{-R}^{+R} \frac{\cos (\sqrt{2} t)}{t^{4}+1} d t=\Re\left(\int_{\gamma_{R}} \frac{e^{i \sqrt{2} z}}{z^{4}+1} d z-\int_{A_{R}} \frac{e^{i \sqrt{2} z}}{z^{4}+1} d z\right)
$$

We treat the two integrals in the right hand side separately: first of all notice that

$$
\left|\int_{A_{R}} \frac{e^{i \sqrt{2} z}}{z^{4}+1} d z\right|=\left|\int_{0}^{\pi} \frac{e^{i \sqrt{2} R e^{i \theta}} R i e^{i \theta}}{R^{4} e^{4 i \theta}+1} d \theta\right| \leq \frac{R \pi}{\left(R^{4}-1\right)} \max _{\theta \in[0, \pi]}\left|e^{i \sqrt{2} R e^{i \theta}}\right| .
$$

Notice now that

$$
\left|e^{i \sqrt{2} R e^{i \theta}}\right|=\left|e^{i \sqrt{2} R(\cos (\theta)+i \sin (\theta))}\right|=\left|e^{-\sqrt{2} R \sin (\theta)}\right| \leq 1
$$

for $\theta \in[0, \pi]$. This proves that

$$
\lim _{R \rightarrow+\infty}\left|\int_{A_{R}} \frac{e^{i \sqrt{2} z}}{z^{4}+1} d z\right| \leq \lim _{R \rightarrow+\infty} \frac{R \pi}{R^{4}-1}=0
$$

We compute the second integral via the Residue Theorem: notice that γ_{R} contains two poles of order one of $f(z)=\frac{e^{i \sqrt{2} z}}{z^{4}+1}$, namely $\left(z_{1}, z_{2}\right)=((1+i) / \sqrt{2},(-1+i) / \sqrt{2})$. Their residues are

$$
\operatorname{res}_{z_{1}} f=-\frac{(1+i) e^{i-1}}{4 \sqrt{2}}
$$

and

$$
\operatorname{res}_{z_{2}} f=\frac{(1-i) e^{-i-1}}{4 \sqrt{2}}
$$

Hence,

$$
\begin{aligned}
\int_{\gamma_{R}} \frac{\cos (\sqrt{2} z)}{z^{4}+1} d z & =2 \pi i\left(\operatorname{res}_{z_{1}} f+\operatorname{res}_{z_{2}} f\right) \\
& =\frac{\pi i}{2 \sqrt{2}}\left((1-i) e^{-i-1}-(1+i) e^{i-1}\right) \\
& =\frac{\pi}{\sqrt{2} e}(\sin (1)+\cos (1))
\end{aligned}
$$

This proves that

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{\cos (\sqrt{2} t)}{t^{4}+1} d t & =\lim _{R+\infty} \int_{-R}^{+R} \frac{\cos (\sqrt{2} t)}{t^{4}+1} d t=\Re\left(\frac{\pi}{\sqrt{2} e}(\sin (1)+\cos (1))\right) \\
& =\frac{\pi}{\sqrt{2} e}(\sin (1)+\cos (1))
\end{aligned}
$$

4. Open question Let $f: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic and injective, with $f(0)=0$.
(a) Show that for every $r>0$ there exists $\varepsilon>0$ such that $|f(z)|>\varepsilon$ for every $z \in \mathbb{C}$ satisfying $|z| \geq r$.

SOL: For $\rho>0$, we denote $B_{\rho}:=\{z \in \mathbb{C}:|z|<\rho\}$. Now, let $r>0$. By the Open Mapping Theorem $f\left(B_{r}\right)$ is open and contains the origin since $f(0)=0$. Therefore, there exists a neighbourhood of the origin in the form $B_{\varepsilon} \subset f\left(B_{r}\right)$ for some $\varepsilon>0$ small enough. Let now $z \in \mathbb{C} \backslash B_{r}$, that is $|z| \geq r$. Since f is injective, $f(z) \notin f\left(B_{r}\right)$, so in particular $f(z) \notin B_{\varepsilon}$, proving that $|f(z)|>\varepsilon$ as wished.
(b) Show that the singularity at zero of the function

$$
g: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, \quad g(z):=f\left(\frac{1}{z}\right)
$$

is a pole.
SOL: We have to prove that zero is neither an essential singularity, nor a removable singularity of f. Suppose by contradiction that zero is an essential singularity of g. Then, by Casorati-Weierstrass for every $\rho>0, g\left(B_{\rho} \backslash\{0\}\right)$ is dense in \mathbb{C}. This contradicts part (a) taking $r=1 / \rho$ since there exists $\varepsilon>0$ such that

$$
g\left(B_{\rho} \backslash\{0\}\right)=f\left(\mathbb{C} \backslash B_{1 / \rho}\right)
$$

does not contain the ball B_{ε}, and hence it cannot be dense in \mathbb{C}. On the other hand, if zero is a removable singularity, then it follows that g extends to a bounded function from \mathbb{C} to \mathbb{C}, and hence it must be constant by Liouville's Theorem, contradicting the injectivity of f.
(c) Conclude that f is a complex polynomial, and therefore $f(z)=c z$ for some $c \in \mathbb{C} \backslash\{0\}$.

SOL: Since f is holomorphic, it can be expressed as

$$
f(z)=\sum_{n=1}^{+\infty} a_{n} z^{n}
$$

in every ball around the origin. Let $k \in \mathbb{N}$ be the order of the pole of g in zero. By definition,

$$
g(z)=f(1 / z)=\sum_{n=1}^{+\infty} a_{n} z^{-n} .
$$

On the other side, letting $k \in \mathbb{N}$ the order of the pole of g, we have that the coefficients a_{k+1}, a_{k+2}, \ldots must be equal to zero, and $a_{k} \neq 0$, since the principal part of g is of order k. This proves that

$$
f(z)=a_{1} z+\ldots a_{k} z^{k}
$$

If $k=1$ we are done. Otherwise, we have by the Fundamental Theorem of Algebra that there exists $w \in \mathbb{C}$ such that $f(z)=w$ has more than a unique solution, contradicting the injectivity of f.
Hints: For part (a) take advantage of the Open Mapping Theorem. For part (b) take advantage of the Casorati-Weierstrass and Liouville Theorems.
5. Open question Let $\Omega \subset \mathbb{C}$ be an open and connected set containing the origin, and $f: \Omega \backslash\{0\} \rightarrow \mathbb{C}$ holomorphic. Suppose that there exists a sequence $\left(z_{n}\right)$ in Ω such that $\lim _{n \rightarrow+\infty} z_{n}=0$ and

$$
\left|f\left(z_{n}\right)\right| \leq e^{-1 /\left|z_{n}\right|}
$$

for all $n \in \mathbb{N}$.
(a) Prove that f has a removable singularity in zero if and only if f is constantly equal to zero in Ω.
SOL: One direction is clear ($f \equiv 0 \Rightarrow f$ has a removable singularity in zero). Let us prove: f has a removable singularity in zero then $f \equiv 0$. By continuity the value of the extension of f in zero is equal to

$$
f(0)=\lim _{n \rightarrow+\infty} f\left(z_{n}\right)=0,
$$

since $\left|f\left(z_{n}\right)\right| \leq e^{-1 /\left|z_{n}\right|} \rightarrow 0$. If the order of this zero is infinite, then $f \equiv 0$, and we are done. Otherwise, let $k \in \mathbb{N}$ such that $\operatorname{ord}_{0} f=k$. Then, by definition, there exists g holomorphic in a neighbourhood $U \subset \Omega$ of zero such that $g(0) \neq 0$ and $f(z)=z^{k} g(z)$. Let now $N>0$ big enough so that $z_{n} \in U$ for all $n \geq N$. Then, from

$$
\left|g\left(z_{n}\right)\right|=\left|z_{n}^{-k} f\left(z_{n}\right)\right| \leq \frac{e^{-1 /\left|z_{n}\right|}}{\left|z_{n}\right|^{k}}
$$

we deduce that $g(0)=\lim _{n \rightarrow+\infty} g\left(z_{n}\right)=0$ since the function $\lim _{t \rightarrow 0} e^{-1 /|t|} /|t|^{k}=0$ for all $k \in \mathbb{N}$. This is a contradiction with the definition of g, proving that $k=\infty$, and hence $f \equiv 0$.
(b) Deduce that f is either a constant, or it has an essential singularity in zero.

SOL: Zero cannot be a pole of f since $\lim _{n \rightarrow+\infty}\left|f\left(z_{n}\right)\right|=0 \neq \infty$. Therefore, if it is a removable singularity, then by part (a) $f \equiv 0$. The only option left is when zero is an essential singularity of f.

