Exercises with $a \star$ are eligible for bonus points.
1.1. Complex Numbers Review Simplify the following expressions

$$
\begin{aligned}
\left(\frac{1-i \sqrt{3}}{2}\right)^{36} & = \\
\frac{1}{i} \frac{1+2 i}{1-2 i}-\frac{2+4 i}{1+2 i}+(1+i)(1-3 i) & = \\
(1+i)^{2 n}(1-i)^{2 m} & =\quad \text { for every } m, n \in \mathbb{N} .
\end{aligned}
$$

1.2. Power Series Investigate the absolute convergence and radius of convergence of the following power series

$$
\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1} z^{n}, \quad \sum_{n=0}^{+\infty} \frac{e^{i n}}{4 n!} z^{n}, \quad \sum_{n=0}^{+\infty} \frac{9 i}{n^{2}} z^{2 n} .
$$

1.3. Cauchy-Riemann and Holomorphicity Show that $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=f(x+i y)=\sqrt{|x||y|}$ satisfies the Cauchy-Riemann equations at the origin, but that it is not holomorphic in zero.
1.4. Geometric transformations of the complex plane Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the holomorphic function defined by $f(z)=a z+b$, for some coefficients $a \in \mathbb{C} \backslash\{0\}$ and $b \in \mathbb{C}$. Suppose that $w \in \mathbb{C}$ is a fixed point of f, that is $f(w)=w$.
(a) Show that $f(z)=a(z-w)+w$.
(b) Identifying \mathbb{C} with \mathbb{R}^{2} describe $f: \mathbb{C} \rightarrow \mathbb{C}$ as combination of geometric transformations of the plane (rotations, translations, and dilations).
1.5. \star Harmonicity A real C^{2}-function $w=w(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be harmonic if its Laplacian $\Delta w=\operatorname{div}(\nabla w):=\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}$ is equal to zero everywhere. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an holomorphic function. Denote with $u=\Re(f)$ and $v=\Im(f)$ the real part and imaginary part of f, so that $f(z)=u(z)+i v(z)$ for every $z \in \mathbb{C}$. Show that both u and v are harmonic functions by identifying \mathbb{C} with \mathbb{R}^{2}.

You can assume for now u and v of class C^{2}. We will see that they are in fact smooth functions.
1.6. \star Applications of $\mathbf{C R}$ equations Let $\Omega \subset \mathbb{C}$ be a domain, i.e an open connected subset of \mathbb{C}.
(a) Let $u: \Omega \rightarrow \mathbb{R}$ be a differentiable function such that $\frac{\partial u}{\partial x}(z)=\frac{\partial u}{\partial y}(z)=0$ for all $z \in \Omega$. Prove that u is constant on Ω.
(b) Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and $f^{\prime}(z)=0$ for all $z \in \Omega$. Prove that f is constant in Ω.
(c) If $f=u+i v$ is holomorphic on Ω and if any of the functions u, v or $|f|$ is constant on Ω then f is constant.

