Exercises with $a \star$ are eligible for bonus points.
2.1. Complex numbers and geometry I Denote with $A_{y}:=\{i y: y \in \mathbb{R}\} \subset \mathbb{C}$ the y-axis in the complex plane. Describe geometrically the image of A_{y} under the exponential map $\left\{e^{z}: z \in A_{y}\right\}$. Repeat the same replacing A_{y} with the x-axis $A_{x}:=\{x: x \in \mathbb{R}\} \subset \mathbb{C}$, the diagonal $D:=\{a+i a: a \in \mathbb{R}\} \subset \mathbb{C}$, and the curve $\{\log (a)+i a: a>0\} \subset \mathbb{C}$.
2.2. Complex numbers and geometry II A Möbius transformation is a map $f: \mathbb{C} \rightarrow \mathbb{C}$ defined as

$$
f(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{C}$ and $a d-c b \neq 0$.
(a) Show that the set of Möbius transformations form a group when endowed with the operation of composition $\left(\left(f_{1} \circ f_{2}\right)(z):=f_{1}\left(f_{2}(z)\right)\right)$.
(b) Show that the image of any circle by a Möbius transformation is either a circle or an affine line.
2.3. \star Integrating over a triangle Let Ω be an open subset of \mathbb{C}. Suppose that $f: \Omega \rightarrow \mathbb{C}$ is holomorphic, and that $f^{\prime}: \Omega \rightarrow \mathbb{C}$ is continuous. Show taking advantage of the Green formula ${ }^{1}$ that

$$
\int_{T} f d z=0
$$

where the integration is along an arbitrary triangle T contained in Ω.
2.4. Line integral I Compute the following complex line integrals. Here $\Re(z)$ and $\Im(z)$ denote respectively the real and imaginary parts of z.
(a) $\int_{\gamma}\left(z^{2}+z\right) d z$, when γ is the segment joining 1 to $1+i$.
(b) $\int_{\gamma}\left(\Re\left(z^{2}\right)-\Im(z)\right) d z$, when γ is the unit circle $\{z \in \mathbb{C}:|z|=1\}$.
(c) $\int_{\gamma} \bar{z} d z$, when γ is the boundary of the half circle $\{z \in \mathbb{C}:|z|<1, \Im(z) \geq 0\}$.

[^0](d) Let $a, b \in \mathbb{C}$ be such that $|a|<1<|b|$. Denote with $C=\{z \in \mathbb{C}:|z|=1\}$ the unit circle in the complex plane. Show that
$$
\int_{C} \frac{d z}{(z-a)(z-b)}=\frac{2 \pi i}{a-b} .
$$
2.5. \star Line integral II Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be any complex polynomial, that is $f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ for some $n \in \mathbb{N}$ and $a_{0}, \ldots, a_{n} \in \mathbb{C}$. Show that the line integral of f along any circle is equal to zero.

Hint: first prove this for the unit circle $\{z:|z|=1\}$ and $f(z)=z^{n}$ for $n \geq 0$. Then, deduce the general result.

[^0]: ${ }^{1}$ Let C be a positively oriented, piecewise-smooth simple curve in the plane, and let D be the region bounded by C. If $\vec{F}=\left(F^{1}, F^{2}\right): \bar{D} \rightarrow \mathbb{R}^{2}$ is a vector field whose components have continuous partial derivatives, then Green's theorem states: $\int_{C} \vec{F} \cdot d r=\iint_{D}\left(\partial_{x} F^{2}-\partial_{y} F^{1}\right) d x d y$.

