Exercises with a \star are eligible for bonus points.

3.1. Complex line integrals

- (a) Compute $\int_{\gamma} \cos(\Re(z)) dz$, when γ is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.
- (b) Compute $\int_{\gamma} (\bar{z})^k dz$ for any $k \in \mathbb{Z}$ and when γ is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.
- (c) Compute $\int_{\gamma} (z^{2023} + \pi z^{11} + i) dz$, when γ is the spiral $\{1 + te^{i\pi t} : t \in [0, 1]\}$.

3.2. \star **A polynomial identity** Let γ be the counter-clockwise oriented circle of radius r > 0 and center $z_0 \in \mathbb{C}$, and let p be any complex polynomial. Show that

$$\int_{\gamma} p(\bar{z}) dz = 2\pi i r^2 p'(\bar{z}_0).$$

3.3. * Real integrals via complex integration For the first point you can use Cauchy Theorem (*f* holomorphic and γ closed implies $\int_{\gamma} f \, dz = 0$). Also, it could be useful to recall the Gaussian integral $\int_{-\infty}^{+\infty} e^{-t^2} \, dt = \sqrt{\pi}$.

(a) Let $f : \mathbb{C} \to \mathbb{C}$ be the holomorphic function defined by $f(z) = e^{iz^2}$ and R > 0. By integrating f over the boundary of $\Omega = \{re^{i\theta} : r \in (0, R), \theta \in (0, \pi/4)\}$, deduce the value of the *Fresnel integrals*

$$\int_0^{+\infty} \cos(x^2) \, dx, \quad \int_0^{+\infty} \sin(x^2) \, dx.$$

October 6, 2023

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Serie 3	Prof. Dr. Ö. Imamoglu

(b) Let γ be the counter clockwise oriented unit circle and $n \in \mathbb{N}$. Compute

$$\int_{\gamma} z^{-1} (z + z^{-1})^{2n} \, dz,$$

and deduce that

$$\int_0^{2\pi} \cos(t)^{2n} dt = \frac{1}{2^{2n-1}} \binom{2n}{n} \pi.$$

3.4. (Challenging and optional) Approximation by polygonal curves Let $\gamma : [a, b] \to \mathbb{C}$ be a closed curve in \mathbb{C} and suppose that there exists a sequence $\gamma_n : [a, b] \to \mathbb{C}$ of polygonal curves, i.e. curves that are piecewise affine, such that $\gamma_n \to \gamma$ and $\gamma'_n \to \gamma'$ uniformly as $n \to +\infty$ (that is $\gamma_n \to \gamma$ with respect to the usual C^1 -topology).

(a) Show that any closed C^2 -curve γ admit such approximation.

(b) Show taking advantage of Goursat Theorem that if $f : \mathbb{C} \to \mathbb{C}$ is holomorphic, f' is continuous, and γ is like in the statement of the exercise, then

$$\int_{\gamma} f \, dz = 0.$$