Exercises with $\mathrm{a} \star$ are eligible for bonus points.

3.1. Complex line integrals

(a) Compute $\int_{\gamma} \cos (\Re(z)) d z$, when γ is the unit circle $\{z \in \mathbb{C}:|z|=1\}$.
(b) Compute $\int_{\gamma}(\bar{z})^{k} d z$ for any $k \in \mathbb{Z}$ and when γ is the unit circle $\{z \in \mathbb{C}:|z|=1\}$.
(c) Compute $\int_{\gamma}\left(z^{2023}+\pi z^{11}+i\right) d z$, when γ is the spiral $\left\{1+t e^{i \pi t}: t \in[0,1]\right\}$.
3.2. \star A polynomial identity Let γ be the counter-clockwise oriented circle of radius $r>0$ and center $z_{0} \in \mathbb{C}$, and let p be any complex polynomial. Show that

$$
\int_{\gamma} p(\bar{z}) d z=2 \pi i r^{2} p^{\prime}\left(\bar{z}_{0}\right)
$$

3.3. \star Real integrals via complex integration For the first point you can use Cauchy Theorem (f holomorphic and γ closed implies $\int_{\gamma} f d z=0$). Also, it could be useful to recall the Gaussian integral $\int_{-\infty}^{+\infty} e^{-t^{2}} d t=\sqrt{\pi}$.
(a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the holomorphic function defined by $f(z)=e^{i z^{2}}$ and $R>0$. By integrating f over the boundary of $\Omega=\left\{r e^{i \theta}: r \in(0, R), \theta \in(0, \pi / 4)\right\}$, deduce the value of the Fresnel integrals

$$
\int_{0}^{+\infty} \cos \left(x^{2}\right) d x, \quad \int_{0}^{+\infty} \sin \left(x^{2}\right) d x
$$

(b) Let γ be the counter clockwise oriented unit circle and $n \in \mathbb{N}$. Compute

$$
\int_{\gamma} z^{-1}\left(z+z^{-1}\right)^{2 n} d z
$$

and deduce that

$$
\int_{0}^{2 \pi} \cos (t)^{2 n} d t=\frac{1}{2^{2 n-1}}\binom{2 n}{n} \pi
$$

3.4. (Challenging and optional) Approximation by polygonal curves Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a closed curve in \mathbb{C} and suppose that there exists a sequence $\gamma_{n}:[a, b] \rightarrow \mathbb{C}$ of polygonal curves, i.e. curves that are piecewise affine, such that $\gamma_{n} \rightarrow \gamma$ and $\gamma_{n}^{\prime} \rightarrow \gamma^{\prime}$ uniformly as $n \rightarrow+\infty$ (that is $\gamma_{n} \rightarrow \gamma$ with respect to the usual C^{1}-topology).
(a) Show that any closed C^{2}-curve γ admit such approximation.
(b) Show taking advantage of Goursat Theorem that if $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic, f^{\prime} is continuous, and γ is like in the statement of the exercise, then

$$
\int_{\gamma} f d z=0 .
$$

