Exercises with a \star are eligible for bonus points.

4.1. ***** Cauchy Formula Compute the following integrals

- (a) $\int_0^{2\pi} e^{e^{it}} dt$.
- (b) $\int_{\gamma} \frac{iz}{(z-\alpha)(z+i\alpha)} dz$, when $\gamma = \{z \in \mathbb{C} : |z| = 2\}$ and $\alpha \in [-1, 1]$.
- (c) $\int_{\gamma} \frac{z^2+z}{z^2+1} dz$, when $\gamma = \{z \in \mathbb{C} : |z| = 3\}.$
- (d) $\int_{\gamma} \sin(z)^2 \cos(z) dz$, when γ is the 'infinity symbol' $t \mapsto \sin(t) + i \sin(t) \cos(t)$, $t \in [0, 2\pi]$.

4.2. The complex logarithm Let

$$U = \mathbb{C} \setminus \{ z \in \mathbb{C} : \Im(z) = 0, \Re(z) \le 0 \}$$

be the open set obtained by removing the negative real axis from the complex plane \mathbb{C} . The complex logarithm is defined in U as

$$\log(z) := \log(|z|) + i \arg(z), \quad z = |z|e^{i \arg(z)}$$

where $\arg(z) \in]-\pi, \pi[$. Show that for every $z \in U$

$$\log(z) = \int_{\gamma} \frac{1}{w} \, dw,$$

where γ is the segment connecting 1 to z.

Hint: integrate over a well chosen closed curve containing γ *and passing through* |z|*.*

4.3. Quotients and integration Let Ω be an open subset of \mathbb{C} , $f : \Omega \to \mathbb{C}$ be an holomorphic function, and $\gamma : [a, b] \to \Omega$ a smooth, closed curve. Suppose |f(z) - 1| < 1 for all $z \in \Omega$. Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 0.$$

October 11, 2023

1/2

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Serie 4	Prof. Dr. Ö. Imamoglu

4.4. \star **Generalized Liouville** Prove the following theorem: every holomorphic function $f : \mathbb{C} \to \mathbb{C}$ such that

 $|f(w)| \le c|w|^n$, for all $w \in \{z \in \mathbb{C} : |z| > C\}$

for some c, C > 0 and $n \ge 0$, is a complex polynomial of degree at most n.