Exercises with $a \star$ are eligible for bonus points.
4.1. \star Cauchy Formula Compute the following integrals
(a) $\int_{0}^{2 \pi} e^{e^{i t}} d t$.
(b) $\int_{\gamma} \frac{i z}{(z-\alpha)(z+i \alpha)} d z$, when $\gamma=\{z \in \mathbb{C}:|z|=2\}$ and $\alpha \in[-1,1]$.
(c) $\int_{\gamma} \frac{z^{2}+z}{z^{2}+1} d z$, when $\gamma=\{z \in \mathbb{C}:|z|=3\}$.
(d) $\int_{\gamma} \sin (z)^{2} \cos (z) d z$, when γ is the 'infinity symbol' $t \mapsto \sin (t)+i \sin (t) \cos (t)$, $t \in[0,2 \pi]$.

4.2. The complex logarithm Let

$$
U=\mathbb{C} \backslash\{z \in \mathbb{C}: \Im(z)=0, \Re(z) \leq 0\}
$$

be the open set obtained by removing the negative real axis from the complex plane \mathbb{C}. The complex logarithm is defined in U as

$$
\log (z):=\log (|z|)+i \arg (z), \quad z=|z| e^{i \arg (z)}
$$

where $\arg (z) \in]-\pi, \pi[$. Show that for every $z \in U$

$$
\log (z)=\int_{\gamma} \frac{1}{w} d w
$$

where γ is the segment connecting 1 to z.
Hint: integrate over a well chosen closed curve containing γ and passing through $|z|$.
4.3. Quotients and integration Let Ω be an open subset of $\mathbb{C}, f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function, and $\gamma:[a, b] \rightarrow \Omega$ a smooth, closed curve. Suppose $|f(z)-1|<1$ for all $z \in \Omega$. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

4.4. \star Generalized Liouville Prove the following theorem: every holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
|f(w)| \leq c|w|^{n}, \quad \text { for all } w \in\{z \in \mathbb{C}:|z|>C\}
$$

for some $c, C>0$ and $n \geq 0$, is a complex polynomial of degree at most n.

