Exercises with a \star are eligible for bonus points.

5.1. Discrete maps A subset \mathcal{A} of an domain $\Omega \subset \mathbb{C}$ is called *discrete* in Ω if it has no limit point in Ω . A function $f: \Omega \to \mathbb{C}$ is called *discrete* if for every $w \in \mathbb{C}$ the set

$$E_w := \{z \in \Omega : f(z) = w\}$$

is discrete in $\Omega.$

(a) Let Ω be connected and open. Show that every non-constant holomorphic function $f: \Omega \to \mathbb{C}$ is discrete.

(b) Show that if Ω is compact, then $\mathcal{A} \subset \Omega$ is discrete if and only if it has finite cardinality. Is this true if Ω is merely bounded?

5.2. Order of zeros

(a) Find the zeros of the function $z \mapsto \cos(z^2)$ and determine their order.

(b) Let $f, g: \mathbb{C} \to \mathbb{C}$ two holomorphic functions that vanish simultaneously at some point $z_0 \in \mathbb{C}$ with order $a \in \mathbb{N}$ and $b \in \mathbb{N}$ respectively. Show that the function h = f + g vanish at z_0 with order $c \ge \min\{a, b\}$. Give an explicit example realizing the strict inequality.

5.3. Taylor series Compute the radius of convergence of the Taylor serie of the function $f(z) = \frac{\sin(z)}{z^2 - i}$ in $z_0 = 0$ and $z_0 = 1$.

5.4. \star **A complex ODE** Take advantage of the power series expansion to find $f: \mathbb{C} \to \mathbb{C}$ holomorphic such that $f'(z) = z^2 f(z)$ and f(0) = 1.

5.5. \star Riemann continuation Theorem Let $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be holomorphic. Show that the following are equivalent:

- 1. There exists $g: \mathbb{C} \to \mathbb{C}$ holomorphic, such that g(z) = f(z) for all $z \neq 0$.
- 2. There exists $g: \mathbb{C} \to \mathbb{C}$ continuous, such that g(z) = f(z) for all $z \neq 0$.
- 3. There exists $\varepsilon > 0$ such that f is bounded in $\dot{B}_{\varepsilon} = \{z \in \mathbb{C} : |z| < \varepsilon\} \setminus \{0\}.$
- 4. $\lim_{z\to 0} zf(z) = 0.$

Hint: to prove $4 \Rightarrow 1$. define h(z) = zf(z) when $z \neq 0$ and h(0) = 0. Analyse the relation between f(z), h(z) and k(z) := zh(z).

October 19, 2023