D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Serie 6	HS 2023

Exercises with a \star are eligible for bonus points.

6.1. Uniform convergence Let Ω be an open subset of \mathbb{R}^M and $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions in $C^0(\Omega, \mathbb{R}^N)$. Show that if f_n converges locally uniformly¹ to some map $f : \Omega \to \mathbb{R}^N$, then $f \in C^0(\Omega, \mathbb{R}^N)$.

6.2. A generalization In Exercise 3.2 we showed the following identity holding for all polynomial p an circle $\gamma = \{z \in \mathbb{C} : |z - z_0| = r\}$: $\int_{\gamma} p(\bar{z}) dz = 2\pi i r^2 p'(\bar{z}_0)$. Extend this result to all entire functions $f : \mathbb{C} \to \mathbb{C}$, proving that

$$\int_{\gamma} f(\bar{z}) dz = 2\pi i r^2 f'(\bar{z}_0)$$

for all circle γ of radius r > 0 centered in z_0 .

6.3. * Schwarz reflection principle Let Ω be open, connected, and symmetric with respect to the *x*-axis (i.e. $z \mapsto \overline{z}$ preserves Ω), and let $f : \Omega \to \mathbb{C}$ be holomorphic. Suppose that $L := \{z \in \Omega : \Im(z) = 0\}$ is non-empty. Prove that $f(\overline{z}) = \overline{f(z)}$ for all $z \in \Omega$ if and only if f is real valued on L.

Hint: consider g to be the restriction of f to the upper half plane intersected with Ω . 'Reflect' g by imposing $g^*(z) := \overline{g(\overline{z})}$. Argue taking advantage of Morera's Theorem.

6.4. Dense image Show that the image of an non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is *dense* in \mathbb{C} , that is: for every $z \in \mathbb{C}$ and $\varepsilon > 0$, there exists $w \in \mathbb{C}$ such that $|z - f(w)| < \varepsilon$.

Remark: The little Picard Theorem asserts in fact that $f(\mathbb{C})$ misses at most one single point of \mathbb{C} !

6.5. \star Geometric identity Let $\Omega \subset \mathbb{C}$ be bounded and open with C^1 -boundary. Show that

$$\int_{\partial\Omega} \bar{z}\,dz = 2iA(\Omega),$$

where $A(\Omega)$ denotes the measure of the area of the set Ω .

¹Recall that local uniform convergence means that for every $x \in \Omega$ there exists an open neighbourhood U of x in Ω so that $f_n \to f$ uniformly in U: $\forall \varepsilon > 0$ there exists $N \in \mathbb{N}$, such that for all $n \geq N \Rightarrow |f_n(y) - f(y)| < \varepsilon$ for all $y \in U$.