D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Serie 7	HS 2023

Exercises with a \star are eligible for bonus points.

7.1. \star Calculus of residues Determine the order of the poles of the following functions and compute their residue at the indicated points:

$$\operatorname{res}_{2i}\left(\frac{1}{z^2+4}\right), \quad \operatorname{res}_0\left(\frac{\sin(z)}{z^2}\right), \quad \operatorname{res}_0\left(\frac{\cos(z)}{z^2}\right), \quad \operatorname{res}_1\left(\frac{1}{z^5-1}\right).$$

7.2. Complex integrals Compute the following complex integrals taking advantage of the Residue Theorem¹.

(a)

$$\int_{|z|=2} \frac{e^z}{z^2(z-1)} \, dz.$$

(b)

$$\int_{|z|=1} \frac{1}{z^2(z^2-4)e^z} \, dz.$$

(c)

$$\int_{|z|=1/2} \frac{1}{z\sin(1/z)} \, dz.$$

(d)

$$\int_{\gamma} \frac{1}{(z-i)(z+2)(z-4)} \, dz,$$

for any simple closed curve γ that does not intersect the points $\{i,-2,4\}.$

7.3. \star **Poles at infinity** Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic. We say that f has a pole at infinity of order $N \in \mathbb{N}$ if the function g(z) := f(1/z) has a pole of order N at the origin in the usual sense. Prove that if $f : \mathbb{C} \to \mathbb{C}$ has a pole of order $N \in \mathbb{N}$ at infinity, then it has to be a polynomial of degree $N \in \mathbb{N}$.

¹Recall: $\{z_1, \ldots, z_N\} \subset \Omega$ poles and $f: \Omega \setminus \{z_1, \ldots, z_N\} \to \mathbb{C}$ holomorphic. Then if $\{z_1, \ldots, z_N\}$ are inside a simple closed curve γ in Ω , then $\int_{\gamma} f \, dz = 2\pi i \sum_{j=1}^{N} \operatorname{res}_{z_j}(f)$.

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Serie 7	Prof. Dr. Ö. Imamoglu

7.4. The Gamma function Let $Z_{-} := \{0, -1, -2, ...\}$ the set of all non-positive integers, and define for all $\tau \in \mathbb{R}$ the set $U_{\tau} := \{z \in \mathbb{C} : \Re(z) > \tau, z \notin Z_{-}\}$, and $U := \mathbb{C} \setminus Z_{-}$.

(a) Show that the function defined by the complex improper Riemann integral

$$\Gamma(z) = \int_0^{+\infty} e^{-t} t^{z-1} dt$$

is well defined for all $z \in U_1$. (Here $t^{z-1} = \exp((z-1)\log(t)))$.

(b) Prove that Γ is holomorphic in U_1 .

Hint: First show that the functions of the sequence $(\Gamma_n)_{n\in\mathbb{N}}$ given by truncating the integral at height n $(\Gamma_n(z) = \int_0^n e^{-t}t^{z-1} dt)$ are holomorphic. Then, show that $\Gamma_n \to \Gamma$ uniformly in all compact subsets of U_1 .

(c) Show that $\Gamma(z+1) = z\Gamma(z)$ for all $z \in U_1$.

(d) Deduce that Γ allows a unique holomorphic extension to U_0 .

(e) Deduce that Γ allows a unique holomorphic extension to U.