Exercises with $a \star$ are eligible for bonus points.
7.1. \star Calculus of residues Determine the order of the poles of the following functions and compute their residue at the indicated points:

$$
\operatorname{res}_{2 i}\left(\frac{1}{z^{2}+4}\right), \quad \operatorname{res}_{0}\left(\frac{\sin (z)}{z^{2}}\right), \quad \operatorname{res}_{0}\left(\frac{\cos (z)}{z^{2}}\right), \quad \operatorname{res}_{1}\left(\frac{1}{z^{5}-1}\right)
$$

7.2. Complex integrals Compute the following complex integrals taking advantage of the Residue Theorem ${ }^{1}$.
(a)

$$
\int_{|z|=2} \frac{e^{z}}{z^{2}(z-1)} d z
$$

(b)

$$
\int_{|z|=1} \frac{1}{z^{2}\left(z^{2}-4\right) e^{z}} d z .
$$

(c)

$$
\int_{|z|=1 / 2} \frac{1}{z \sin (1 / z)} d z
$$

(d)

$$
\int_{\gamma} \frac{1}{(z-i)(z+2)(z-4)} d z
$$

for any simple closed curve γ that does not intersect the points $\{i,-2,4\}$.
7.3. \star Poles at infinity Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. We say that f has a pole at infinity of order $N \in \mathbb{N}$ if the function $g(z):=f(1 / z)$ has a pole of order N at the origin in the usual sense. Prove that if $f: \mathbb{C} \rightarrow \mathbb{C}$ has a pole of order $N \in \mathbb{N}$ at infinity, then it has to be a polynomial of degree $N \in \mathbb{N}$.

[^0]7.4. The Gamma function Let $Z_{-}:=\{0,-1,-2, \ldots\}$ the set of all non-positive integers, and define for all $\tau \in \mathbb{R}$ the set $U_{\tau}:=\left\{z \in \mathbb{C}: \Re(z)>\tau, z \notin Z_{-}\right\}$, and $U:=\mathbb{C} \backslash Z_{-}$.
(a) Show that the function defined by the complex improper Riemann integral
$$
\Gamma(z)=\int_{0}^{+\infty} e^{-t} t^{z-1} d t
$$
is well defined for all $z \in U_{1}$. (Here $\left.t^{z-1}=\exp ((z-1) \log (t))\right)$.
(b) Prove that Γ is holomorphic in U_{1}.

Hint: First show that the functions of the sequence $\left(\Gamma_{n}\right)_{n \in \mathbb{N}}$ given by truncating the integral at height $n\left(\Gamma_{n}(z)=\int_{0}^{n} e^{-t} t^{z-1} d t\right)$ are holomorphic. Then, show that $\Gamma_{n} \rightarrow \Gamma$ uniformly in all compact subsets of U_{1}.
(c) Show that $\Gamma(z+1)=z \Gamma(z)$ for all $z \in U_{1}$.
(d) Deduce that Γ allows a unique holomorphic extension to U_{0}.
(e) Deduce that Γ allows a unique holomorphic extension to U.

[^0]: ${ }^{1}$ Recall: $\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ poles and $f: \Omega \backslash\left\{z_{1}, \ldots, z_{N}\right\} \rightarrow \mathbb{C}$ holomorphic. Then if $\left\{z_{1}, \ldots, z_{N}\right\}$ are inside a simple closed curve γ in Ω, then $\int_{\gamma} f d z=2 \pi i \sum_{j=1}^{N} \operatorname{res}_{z_{j}}(f)$.

