Exercises with $\mathrm{a} \star$ are eligible for bonus points.
9.1. Laurent Series A Laurent series centered at $z_{0} \in \mathbb{C}$ is a series of the form

$$
\sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n}=\cdots+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

where $\left(a_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{C}$. We define $\rho_{0}, \rho_{I} \in[0,+\infty]$ the outer and inner radius of convergence as

$$
\rho_{0}:=\left(\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}\right)^{-1}, \quad \rho_{I}:=\limsup _{n \rightarrow+\infty}\left|a_{-n}\right|^{1 / n} .
$$

If $\rho_{I}<\rho_{0}$, we define the annulus of convergence as

$$
\mathcal{A}\left(z_{0}, \rho_{I}, \rho_{0}\right):=\left\{z \in \mathbb{C}: \rho_{I}<\left|z-z_{0}\right|<\rho_{0}\right\}
$$

with the convention $\mathcal{A}\left(z_{0}, \rho_{I},+\infty\right)=\left\{z \in \mathbb{C}: \rho_{I}<\left|z-z_{0}\right|\right\}$, so that in particular $\mathcal{A}\left(z_{0}, 0,+\infty\right)=\mathbb{C} \backslash\left\{z_{0}\right\}$.
(a) Show that if $\rho_{0}>0$, then the series

$$
f_{0}(z):=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad z \in \mathcal{D}_{0}\left(z_{0}, \rho_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\rho_{0}\right\}
$$

converges absolutely and uniformly on compact sets. Show that if $\rho_{I}<+\infty$, then the series

$$
f_{I}(z):=\sum_{n=0}^{+\infty} a_{-n}\left(z-z_{0}\right)^{-n}, \quad z \in \mathcal{D}_{I}\left(z_{0}, \rho_{I}\right):=\left\{z \in \mathbb{C}: \rho_{I}<\left|z-z_{0}\right|\right\}
$$

converges absolutely and uniformly on compact sets.
(b) Show that a Laurent series is divergent for any z satisfying $\left|z-z_{0}\right|>\rho_{0}$ or $\left|z-z_{0}\right|<\rho_{I}$.
(c) Deduce that the full Laurent series

$$
f(z):=\sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n}
$$

defines an analytic function in $\mathcal{A}\left(z_{0}, \rho_{I}, \rho_{0}\right)$, and its coefficients are related to f by the formula

$$
a_{n}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

for any $n \in \mathbb{Z}$ and $r \in\left(\rho_{I}, \rho_{0}\right)$.
9.2. \star Meromorphic functions Recall the definition of $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$.
(a) Let $f: \mathbb{C} \rightarrow \hat{\mathbb{C}}$ be meromorphic. Show that f has at most countably many poles.
(b) Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be meromorphic on $\hat{\mathbb{C}}$. Show that f has at most finitely many poles.
(c) Deduce that if $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is meromorphic on $\hat{\mathbb{C}}$, than it is a rational function.
9.3. Generalization of the Argument Principle Let $\Omega \subset \mathbb{C}$ open, $z_{0} \in \Omega$ and $r>0$ such that $\bar{D}\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\} \subset \Omega$. Suppose that $f: \Omega \rightarrow \mathbb{C}$ is homolorphic and that $f(z) \neq 0$ on the circle $\partial D\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. Show that for any holomorphic function $\varphi: \Omega \rightarrow \mathbb{C}$ we have that

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f^{\prime}}{f} \varphi d z=\sum_{w \in D\left(z_{0}, r\right): f(w)=0}\left(\operatorname{ord}_{w} f\right) \varphi(w)
$$

9.4. \star Application of Rouché Theorem Take advantage of the Rouché Theorem ${ }^{1}$ to solve the following.
(a) Show that the polynomial

$$
p(z)=z^{4}+z^{3}+4 z^{2}+1
$$

has exactly 2 zeros in $\{z \in \mathbb{C}: 1<|z|<3\}$.
(b) For every $1<\lambda$ consider the map

$$
f_{\lambda}(z):=z+\lambda-e^{z} .
$$

Show that f_{λ} has exactly one zero z_{0} in the half plane $\Omega=\{z \in \mathbb{C}: \Re(z)<0\}$. Show that $\Im\left(z_{0}\right)=0$, that is z_{0} belongs to the real axis.

[^0]
[^0]: ${ }^{1}$ Recall: Let $f, g: \Omega \rightarrow \mathbb{C}$ holomorphic and γ a closed, simple curve in Ω such that its interior lies in Ω. If $|f(z)|>|g(z)|$ for all $z \in \gamma$, then f and $f+g$ have the same number of zeros in the interior of γ.

