Exercises with $a \star$ are eligible for bonus points.
10.1. Laurent Series II Let $0 \leq s_{1}<r_{1}<r_{2}<s_{2}$, and set $U=\mathcal{A}\left(0, s_{1}, s_{2}\right)$ and $V=\mathcal{A}\left(0, r_{1}, r_{2}\right)$ (like in Exercise 9.1). Denote with γ_{1} and γ_{2} the circles of radius r_{1} and r_{2}, respectively, positively oriented. Let $f: U \rightarrow \mathbb{C}$ be a general holomorphic function.
(a) Show that the functions

$$
g_{1}(z)=\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(w)}{w-z} d w, \quad \text { for }|z|>r_{1}
$$

and

$$
g_{2}(z)=\frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f(w)}{w-z} d w, \quad \text { for }|z|<r_{2}
$$

are well defined and holomorphic.
(b) Let γ be the closed curve obtained by going along γ_{2} starting at r_{2}, then along the segment joining r_{2} to r_{1}, then along $-\gamma_{1}$, and finally back via the segment joining r_{1} to r_{2}. Let $z_{0} \in V$ and $r>0$ small enough such that $\sigma=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$ is

in V. Without giving a full proof, by sketching the steps of the homotopy, explain why σ and γ are homotopic in U.
(c) Show that $f=g_{2}-g_{1}$ in V.
(d) Deduce that f can be represented as a Laurent serie, meaning: there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ such that the series $\sum_{n \geq 1} a_{n} z^{n}$ and $\sum_{n \geq 1} a_{-n} z^{-n}$ are absolutely convergent in V, and satisfy

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}, \quad \text { in } V
$$

10.2. \star Logarithm Let U be an open and simply connected domain of \mathbb{C}, and $f: U \rightarrow \mathbb{C}$ a non-vanishing holomorphic function. Fix $z_{0} \in U$ and denote with γ_{z} an arbitrary curve in U connecting z_{0} to z.
(a) Show that the function

$$
g(z)=\int_{\gamma_{z}} \frac{f^{\prime}}{f} d w
$$

is well defined and holomorphic in U, and that $g^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}$ for all $z \in U$.
(b) Compute the derivative of $\frac{\exp (g(z))}{f(z)}$.
(c) Deduce that there exists \tilde{g} holomorphic in U such that $f=\exp (\tilde{g})$. Is this function unique?
(d) Show that for every $n \in \mathbb{N}$ there exists an holomorphic function $h_{n}: U \rightarrow \mathbb{C}$ such that $\left(h_{n}\right)^{n}=f$.
10.3. Complex vs Real Is it true that if $u, v: \mathbb{C} \rightarrow \mathbb{R}$ are smooth and open maps, then $f=u+i v$ is open? If true prove it otherwise give a counter example.

10.4. Symmetric Rouché

(a) Prove the following variation of Rouchés Theorem by Theodor Estermann (1962): Suppose f, g are holomorphic functions in an open domain $\Omega \subset \mathbb{C}$ and $\gamma \subset \Omega$ a simple, closed curve. If

$$
|f(z)+g(z)|<|f(z)|+|g(z)|, \quad \text { for all } z \in \gamma
$$

then f and g share the same number of zeros in the interior of γ.
Hint: consider the map $t f(z)-(1-t) g(z)$.
(b) Show that the above result implies Rouché Theorem as we have seen it in class.
(c) Show with a simple counterexample that the result of point (a) is stronger than Rouché Theorem as we have seen it in class.
10.5. \star Maps preserving orthogonality Let $\Omega \in \mathbb{R}^{2}$ open, and $f: \Omega \rightarrow \mathbb{R}^{2}$ smooth. Show that if f is orientation preserving ${ }^{1}$ and sends curves intersecting orthogonally to curves intersecting orthogonally, then f is holomorphic (by identifying \mathbb{R}^{2} with \mathbb{C}).

[^0]
[^0]: ${ }^{1}$ That is the determinant of its Jacobian is positive.

