Exercises with $\mathrm{a} \star$ are eligible for bonus points.

11.1. \star Complex integral Evaluate

$$
\int_{|z|=1} \frac{z^{10}-2 i z}{2 \pi z^{11}+2 z^{6}-3 z^{4}-i} d z
$$

Hint: take advantage of Rouché Theorem and the Homotopy Theorem.
11.2. Winding number Evaluate the integral $\int_{\gamma} f d z$ when $f(z)=\frac{e^{i z}}{z^{2}\left(z^{4}-1\right)}$ and γ is as follows:

11.3. Fractional Residues Prove the following: if z_{0} is a simple pole of a meromorphic function f and A_{ε} is an arc of the circle $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=\varepsilon\right\}$ of an angle $\alpha \in(0,2 \pi]$, then

$$
\lim _{\varepsilon \rightarrow 0} \int_{A_{\varepsilon}} f d z=\alpha i \operatorname{res}_{z_{0}}(f) .
$$

11.4. \star Real integral Evaluate

$$
\int_{-\infty}^{+\infty} \frac{\sin (x)}{x(x-\pi)} d x
$$

Hint: take a suitable contour in \mathbb{C} that avoids the zeros of the denominator. Take advantage of Exercise 11.3.

11.5. Real integral II Let $\alpha \in(0,1)$. Evaluate

$$
\int_{0}^{+\infty} \frac{x^{2 \alpha-1}}{1+x^{2}} d x
$$

choosing a suitable branch of the logarithm.

