1.1. Complex Numbers Review Simplify the following expressions

$$\left(\frac{1-i\sqrt{3}}{2}\right)^{36} = \frac{1}{i}\frac{1+2i}{1-2i} - \frac{2+4i}{1+2i} + (1+i)(1-3i) = (1+i)^{2n}(1-i)^{2m} = \text{for every } m, n \in \mathbb{N}.$$

SOL: Notice that $\frac{1-i\sqrt{3}}{2}$ is a complex root of $z^6 = 1$. Hence

$$\left(\frac{1-i\sqrt{3}}{2}\right)^{36} = (1)^6 = 1.$$

An elementary computation shows that

$$\frac{1}{i}\frac{1+2i}{1-2i} - \frac{2+4i}{1+2i} + (1+i)(1-3i) = \frac{14-7i}{5}$$

Since $(1+i)^2 = 2i$ and $(1-i)^2 = -2i$ we have that

$$(1+i)^{2n}(1-i)^{2m} = 2^{m+n}(i)^n(-i)^m$$

= $-2^{m+n}(i)^{m+n} = \begin{cases} -2^{m+n}, & \text{if } m+n \equiv 0 \mod 4, \\ -2^{m+n}i, & \text{if } m+n \equiv 1 \mod 4, \\ 2^{m+n}i, & \text{if } m+n \equiv 2 \mod 4, \\ 2^{m+n}i, & \text{if } m+n \equiv 3 \mod 4. \end{cases}$

1.2. Power Series Investigate the absolute convergence and radius of convergence of the following power series

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} z^n, \qquad \sum_{n=0}^{+\infty} \frac{e^{in}}{4n!} z^n, \qquad \sum_{n=0}^{+\infty} \frac{9i}{n^2} z^{2n}.$$

SOL: Let (a_n) be a sequence of complex numbers. We recall that setting

$$R = \begin{cases} \frac{1}{\limsup_{n \to +\infty} |a_n|^{1/n}}, & \text{if } \limsup_{n \to +\infty} |a_n|^{1/n} > 0, \\ +\infty, & \text{otherwise,} \end{cases}$$

the associated complex power serie $\sum_{n=0}^{+\infty} a_n z^n$ converges absolutely if |z| < R and diverges if |z| > R. Since

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \left| \frac{(-1)^n}{2n+1} \right|^{1/n} = \lim_{n \to +\infty} \frac{1}{(2n+1)^{1/n}} = 1,$$

September 27, 2023

 $1/_{5}$

and

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \left| \frac{e^{in}}{4n!} \right|^{1/n} = \lim_{n \to +\infty} \frac{1}{(4n!)^{1/n}} = 0,$$

we have that the first power serie of the exercise is absolutely convergent if |z| < 1, and the second converges everywhere. Setting k = 2n, we can rewrite the third one as

$$\sum_{n=0}^{+\infty} \frac{9i}{n^2} z^{2n} = \sum_{k \text{ even}} \frac{36i}{k^2} z^k,$$

so that we have to check

$$\lim_{\substack{k \to +\infty \\ k \text{ even}}} \sup_{k \to +\infty} \left| \frac{36i}{k^2} \right|^{1/k} = \limsup_{k \to +\infty} \frac{36^{1/k}}{(k)^{2/k}} = 1.$$

We deduce that the radius of convergence of the third serie is equal to one.

1.3. Cauchy-Riemann and Holomorphicity Show that $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = f(x + iy) = \sqrt{|x||y|}$ satisfies the Cauchy-Riemann equations at the origin, but that it is *not* holomorphic in zero.

SOL: In this case, setting f = u + iv we have that $u(z) = u(x + iy) = \sqrt{|x||y|}$ and $v \equiv 0$. By the very definition of partial derivative, we get that

$$\frac{\partial u}{\partial x}(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0,$$

and similarly $\frac{\partial u}{\partial y}(0,0) = 0$. So the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

are clearly satisfied in z = 0. However, f is not holomorphic at the origin, since choosing for instance the particular complex increment of differentiation H = 1 + i, we get that

$$\lim_{\substack{\tau \to 0 \\ \tau > 0}} \frac{f(\tau H) - f(0)}{\tau H} = \lim_{\substack{\tau \to 0 \\ \tau > 0}} \frac{1}{\tau} \frac{\tau}{1+i} = \frac{1}{1+i} \neq 0,$$

On the other hand if we choose H = 2 + i than a similar argument gives that the above limit is $\frac{\sqrt{2}}{2+i}$ Hence the limit of the differential quotient (f(h) - f(0))/h depends on how $h \in \mathbb{C}$ approaches zero.

1.4. Geometric transformations of the complex plane Let $f : \mathbb{C} \to \mathbb{C}$ be the holomorphic function defined by f(z) = az + b, for some coefficients $a \in \mathbb{C} \setminus \{0\}$ and $b \in \mathbb{C}$. Suppose that $w \in \mathbb{C}$ is a fixed point of f, that is f(w) = w.

(a) Show that f(z) = a(z - w) + w.

SOL: Since f(w) = aw + b = w, solving for b we get that b = w(1 - a), which implies f(z) = az + w(1 - a) = a(z - w) + w.

(b) Identifying \mathbb{C} with \mathbb{R}^2 describe $f : \mathbb{C} \to \mathbb{C}$ as combination of geometric transformations of the plane (rotations, translations, and dilations).

SOL: Letting T(z) := z + w and R(z) = az it is clear that $f = T \circ R \circ T^{-1}$, where $T^{-1}(z) = z - w$ denotes the inverse of T. The maps T and T^{-1} are translations in the w and -w direction. Expressing a in polar coordinates $a = |a|e^{i\theta}$ and identifying \mathbb{C} with \mathbb{R}^2 we get that

$$R(z) = R(x + iy) = |a|(\cos(\theta) + i\sin(\theta))(x + iy)$$

corresponds to the map

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto |a| \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$$

which is a rotation of θ radians followed by a dilation of size |a|. Hence, f is a rotation of the complex plane around w by $\theta = \arg(a)$ radians, followed by a dilation centered in w of size |a|.

1.5. * Harmonicity A real C^2 -function $w = w(x, y) : \mathbb{R}^2 \to \mathbb{R}$ is said to be harmonic if its Laplacian $\Delta w = \operatorname{div}(\nabla w) := \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}$ is equal to zero everywhere. Let $f : \mathbb{C} \to \mathbb{C}$ be an holomorphic function. Denote with $u = \Re(f)$ and $v = \Im(f)$ the real part and imaginary part of f, so that f(z) = u(z) + iv(z) for every $z \in \mathbb{C}$. Show that both u and v are harmonic functions by identifying \mathbb{C} with \mathbb{R}^2 .

You can assume for now u and v of class C^2 . We will see that they are in fact smooth functions.

SOL: Differentiating the first Cauchy-Riemann equation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ in the *y*-direction, interchanging the order of differentiation and taking advantage of the second Cauchy-Riemann equation $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ one gets that

$$\frac{\partial^2 u}{\partial^2 x} = \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x} = -\frac{\partial^2 u}{\partial^2 y},$$

which implies $\Delta u = 0$. The same works for v by starting with the second Cauchy-Riemann equation differentiated in the y direction.

1.6. \star Applications of CR equations Let $\Omega \subset \mathbb{C}$ be a domain, i.e an open connected subset of \mathbb{C} .

September 27, 2023

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Solutions 1	Prof. Dr. Ö. Imamoglu

(a) Let $u: \Omega \to \mathbb{R}$ be a differentiable function such that $\frac{\partial u}{\partial x}(z) = \frac{\partial u}{\partial y}(z) = 0$ for all $z \in \Omega$. Prove that u is constant on Ω

SOL: Fix $z \in \Omega$ and let $w \in \Omega$ so that the segment $\gamma(t) = (1-t)z + tw, t \in [0,1]$, is contained if Ω . Define the function $g: [0,1] \to \mathbb{R}$ by $g(t) := u(\gamma(t))$. Since u and γ are differentiable, we have that $g \in C^1(0,1)$, with derivative

 $g'(t) = \nabla u(\gamma(t)) \cdot \gamma'(t),$

where $\nabla u(\gamma(t)) = (\frac{\partial u}{\partial x}(\gamma(t)), \frac{\partial u}{\partial y}(\gamma(t)))$ and $\gamma'(t) = w - z$. By assumption, $\nabla u \equiv 0$ everywhere, hence $g' \equiv 0$, implying u(w) = g(1) = g(0) = u(z). Suppose now $w \in \Omega$ is arbitrary. Since the domain Ω is open and connected there exists a finite sequence of points w_0, w_1, \ldots, w_N in Ω so that $w_0 = z, w_N = w$ and for every $j = 0, \ldots, N-1$ the segment joining w_j to w_{j+1} is contained in Ω . Repeating the previous argument on each segment, we obtain that $u(z) = u(w_0) = u(w_1) = \cdots = u(w_{N-1}) = u(w_N) = u(w)$ for all $w \in \Omega$, showing that u is indeed a constant function.

(b) Let $f : \Omega \to \mathbb{C}$ be holomorphic and f'(z) = 0 for all $z \in \Omega$. Prove that f is constant in Ω .

SOL: Since f is holomorphic in Ω , its real and imaginary parts are is particular differentiable in the sense of real analysis by looking at Ω as a subset of \mathbb{R}^2 . Moreover, since $0 = f'(z) = 2\frac{\partial u}{\partial z} = \left(\frac{\partial u}{\partial x} + \frac{1}{i}\frac{\partial u}{\partial y}\right)$ we have that $\nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \equiv 0$ in Ω . By point (a) we get that u must be constant in Ω . The same holds for v by noticing that $f'(z) = 2i\frac{\partial v}{\partial z}$. Hence, f = u + iv is constant in Ω .

(c) If f = u + iv is holomorphic on Ω and if any of the functions u, v or |f| is constant on Ω then f is constant.

SOL: If v is constant, we get from the Cauchy-Riemann equations that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0$ implying by point (a) that u is also constant, and therefore f is constant. The same holds if u is constant by interchanging the roles of u and v. If $|f| = \sqrt{u^2 + v^2}$ is constant, then also $|f|^2$ must be constant. Hence, by applying the Cauchy-Riemann identities, we get that

$$0 = \nabla |f|^2 = \left(2v\frac{\partial v}{\partial x} + 2u\frac{\partial u}{\partial x}, 2v\frac{\partial v}{\partial y} + 2u\frac{\partial u}{\partial y}\right) = \left(2v\frac{\partial v}{\partial x} + 2u\frac{\partial v}{\partial y}, 2v\frac{\partial v}{\partial y} - 2u\frac{\partial v}{\partial x}\right)$$

implying that

$$v\frac{\partial v}{\partial x} + u\frac{\partial v}{\partial y} = 0 = v\frac{\partial v}{\partial y} - u\frac{\partial v}{\partial x}.$$
(1)

September 27, 2023

4/5

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Solutions 1	HS 2023

Now, multiplying the left hand side by v and the right hand side by u we get that the expression simplifies in

$$(u^2 + v^2)\frac{\partial v}{\partial x} = 0.$$

We have now two possibilities: if $u^2 + v^2$ vanishes somewhere, by the assumption |f| = constant we get that u = v = 0 everywhere in Ω . Otherwise, from the above expression we deduce that $\frac{\partial v}{\partial x} = 0$ in Ω . The same argument proves that $\frac{\partial v}{\partial y} = 0$ by multiplying the left hand side of (1) by u and the right hand side by -v. This proves by part (a) that v is constant and hence as above f is constant.