1.1. Complex Numbers Review Simplify the following expressions

$$
\begin{aligned}
\left(\frac{1-i \sqrt{3}}{2}\right)^{36} & = \\
\frac{1}{i} \frac{1+2 i}{1-2 i}-\frac{2+4 i}{1+2 i}+(1+i)(1-3 i) & = \\
(1+i)^{2 n}(1-i)^{2 m} & =\quad \text { for every } m, n \in \mathbb{N} .
\end{aligned}
$$

SOL: Notice that $\frac{1-i \sqrt{3}}{2}$ is a complex root of $z^{6}=1$. Hence

$$
\left(\frac{1-i \sqrt{3}}{2}\right)^{36}=(1)^{6}=1
$$

An elementary computation shows that

$$
\frac{1}{i} \frac{1+2 i}{1-2 i}-\frac{2+4 i}{1+2 i}+(1+i)(1-3 i)=\frac{14-7 i}{5}
$$

Since $(1+i)^{2}=2 i$ and $(1-i)^{2}=-2 i$ we have that

$$
\begin{aligned}
(1+i)^{2 n}(1-i)^{2 m} & =2^{m+n}(i)^{n}(-i)^{m} \\
& =-2^{m+n}(i)^{m+n}= \begin{cases}-2^{m+n}, & \text { if } m+n=0 \bmod 4 \\
-2^{m+n} i, & \text { if } m+n=1 \bmod 4 \\
2^{m+n}, & \text { if } m+n=2 \bmod 4, \\
2^{m+n} i, & \text { if } m+n=3 \bmod 4 .\end{cases}
\end{aligned}
$$

1.2. Power Series Investigate the absolute convergence and radius of convergence of the following power series

$$
\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1} z^{n}, \quad \sum_{n=0}^{+\infty} \frac{e^{i n}}{4 n!} z^{n}, \quad \sum_{n=0}^{+\infty} \frac{9 i}{n^{2}} z^{2 n} .
$$

SOL: Let $\left(a_{n}\right)$ be a sequence of complex numbers. We recall that setting

$$
R= \begin{cases}\frac{1}{\lim \sup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}}, & \text { if } \limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}>0 \\ +\infty, & \text { otherwise }\end{cases}
$$

the associated complex power serie $\sum_{n=0}^{+\infty} a_{n} z^{n}$ converges absolutely if $|z|<R$ and diverges if $|z|>R$. Since

$$
\limsup _{n \rightarrow+\infty}\left|\frac{(-1)^{n}}{2 n+1}\right|^{1 / n}=\lim _{n \rightarrow+\infty} \frac{1}{(2 n+1)^{1 / n}}=1
$$

and

$$
\limsup _{n \rightarrow+\infty}\left|\frac{e^{i n}}{4 n!}\right|^{1 / n}=\lim _{n \rightarrow+\infty} \frac{1}{(4 n!)^{1 / n}}=0
$$

we have that the first power serie of the exercise is absolutely convergent if $|z|<1$, and the second converges everywhere. Setting $k=2 n$, we can rewrite the third one as

$$
\sum_{n=0}^{+\infty} \frac{9 i}{n^{2}} z^{2 n}=\sum_{k \text { even }} \frac{36 i}{k^{2}} z^{k}
$$

so that we have to check

$$
\limsup _{\substack{k \rightarrow+\infty \\ k \text { even }}}\left|\frac{36 i}{k^{2}}\right|^{1 / k}=\limsup _{k \rightarrow+\infty} \frac{36^{1 / k}}{(k)^{2 / k}}=1
$$

We deduce that the radius of convergence of the third serie is equal to one.
1.3. Cauchy-Riemann and Holomorphicity Show that $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=f(x+i y)=\sqrt{|x||y|}$ satisfies the Cauchy-Riemann equations at the origin, but that it is not holomorphic in zero.
SOL: In this case, setting $f=u+i v$ we have that $u(z)=u(x+i y)=\sqrt{|x||y|}$ and $v \equiv 0$. By the very definition of partial derivative, we get that

$$
\frac{\partial u}{\partial x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x-0}=\lim _{x \rightarrow 0} \frac{0}{x}=0,
$$

and similarly $\frac{\partial u}{\partial y}(0,0)=0$. So the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are clearly satisfied in $z=0$. However, f is not holomorphic at the origin, since choosing for instance the particular complex increment of differentiation $H=1+i$, we get that

$$
\lim _{\substack{\tau \rightarrow 0 \\ \tau>0}} \frac{f(\tau H)-f(0)}{\tau H}=\lim _{\substack{\tau \rightarrow 0 \\ \tau>0}} \frac{1}{\tau} \frac{\tau}{1+i}=\frac{1}{1+i} \neq 0
$$

On the other hand if we choose $H=2+i$ than a similar argument gives that the above limit is $\frac{\sqrt{2}}{2+i}$ Hence the limit of the differential quotient $(f(h)-f(0)) / h$ depends on how $h \in \mathbb{C}$ approaches zero.
1.4. Geometric transformations of the complex plane Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the holomorphic function defined by $f(z)=a z+b$, for some coefficients $a \in \mathbb{C} \backslash\{0\}$ and $b \in \mathbb{C}$. Suppose that $w \in \mathbb{C}$ is a fixed point of f, that is $f(w)=w$.
(a) Show that $f(z)=a(z-w)+w$.

SOL: Since $f(w)=a w+b=w$, solving for b we get that $b=w(1-a)$, which implies $f(z)=a z+w(1-a)=a(z-w)+w$.
(b) Identifying \mathbb{C} with \mathbb{R}^{2} describe $f: \mathbb{C} \rightarrow \mathbb{C}$ as combination of geometric transformations of the plane (rotations, translations, and dilations).
SOL: Letting $T(z):=z+w$ and $R(z)=a z$ it is clear that $f=T \circ R \circ T^{-1}$, where $T^{-1}(z)=z-w$ denotes the inverse of T. The maps T and T^{-1} are translations in the w and $-w$ direction. Expressing a in polar coordinates $a=|a| e^{i \theta}$ and identifying \mathbb{C} with \mathbb{R}^{2} we get that

$$
R(z)=R(x+i y)=|a|(\cos (\theta)+i \sin (\theta))(x+i y)
$$

corresponds to the map

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto|a|\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

which is a rotation of θ radians followed by a dilation of size $|a|$. Hence, f is a rotation of the complex plane around w by $\theta=\arg (a)$ radians, followed by a dilation centered in w of size $|a|$.
1.5. \star Harmonicity A real C^{2}-function $w=w(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be harmonic if its Laplacian $\Delta w=\operatorname{div}(\nabla w):=\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}$ is equal to zero everywhere. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an holomorphic function. Denote with $u=\Re(f)$ and $v=\Im(f)$ the real part and imaginary part of f, so that $f(z)=u(z)+i v(z)$ for every $z \in \mathbb{C}$. Show that both u and v are harmonic functions by identifying \mathbb{C} with \mathbb{R}^{2}.
You can assume for now u and v of class C^{2}. We will see that they are in fact smooth functions.
SOL: Differentiating the first Cauchy-Riemann equation $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ in the y-direction, interchanging the order of differentiation and taking advantage of the second CauchyRiemann equation $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ one gets that

$$
\frac{\partial^{2} u}{\partial^{2} x}=\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}=-\frac{\partial^{2} u}{\partial^{2} y}
$$

which implies $\Delta u=0$. The same works for v by starting with the second CauchyRiemann equation differentiated in the y direction.
1.6. \star Applications of $\mathbf{C R}$ equations Let $\Omega \subset \mathbb{C}$ be a domain, i.e an open connected subset of \mathbb{C}.
(a) Let $u: \Omega \rightarrow \mathbb{R}$ be a differentiable function such that $\frac{\partial u}{\partial x}(z)=\frac{\partial u}{\partial y}(z)=0$ for all $z \in \Omega$. Prove that u is constant on Ω

SOL: Fix $z \in \Omega$ and let $w \in \Omega$ so that the segment $\gamma(t)=(1-t) z+t w, t \in[0,1]$, is contained if Ω. Define the function $g:[0,1] \rightarrow \mathbb{R}$ by $g(t):=u(\gamma(t))$. Since u and γ are differentiable, we have that $g \in C^{1}(0,1)$, with derivative

$$
g^{\prime}(t)=\nabla u(\gamma(t)) \cdot \gamma^{\prime}(t)
$$

where $\nabla u(\gamma(t))=\left(\frac{\partial u}{\partial x}(\gamma(t)), \frac{\partial u}{\partial y}(\gamma(t))\right)$ and $\gamma^{\prime}(t)=w-z$. By assumption, $\nabla u \equiv 0$ everywhere, hence $g^{\prime} \equiv 0$, implying $u(w)=g(1)=g(0)=u(z)$. Suppose now $w \in \Omega$ is arbitrary. Since the domain Ω is open and connected there exists a finite sequence of points $w_{0}, w_{1}, \ldots, w_{N}$ in Ω so that $w_{0}=z, w_{N}=w$ and for every $j=0, \ldots, N-1$ the segment joining w_{j} to w_{j+1} is contained in Ω. Repeating the previous argument on each segment, we obtain that $u(z)=u\left(w_{0}\right)=u\left(w_{1}\right)=\cdots=u\left(w_{N-1}\right)=u\left(w_{N}\right)=u(w)$ for all $w \in \Omega$, showing that u is indeed a constant function.
(b) Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and $f^{\prime}(z)=0$ for all $z \in \Omega$. Prove that f is constant in Ω.

SOL: Since f is holomorphic in Ω, its real and imaginary parts are is particular differentiable in the sense of real analysis by looking at Ω as a subset of \mathbb{R}^{2}. Moreover, since $0=f^{\prime}(z)=2 \frac{\partial u}{\partial z}=\left(\frac{\partial u}{\partial x}+\frac{1}{i} \frac{\partial u}{\partial y}\right)$ we have that $\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \equiv 0$ in Ω. By point (a) we get that u must be constant in Ω. The same holds for v by noticing that $f^{\prime}(z)=2 i \frac{\partial v}{\partial z}$. Hence, $f=u+i v$ is constant in Ω.
(c) If $f=u+i v$ is holomorphic on Ω and if any of the functions u, v or $|f|$ is constant on Ω then f is constant.

SOL: If v is constant, we get from the Cauchy-Riemann equations that $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=0$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=0$ implying by point (a) that u is also constant, and therefore f is constant. The same holds if u is constant by interchanging the roles of u and v. If $|f|=\sqrt{u^{2}+v^{2}}$ is constant, then also $|f|^{2}$ must be constant. Hence, by applying the Cauchy-Riemann identities, we get that

$$
0=\nabla|f|^{2}=\left(2 v \frac{\partial v}{\partial x}+2 u \frac{\partial u}{\partial x}, 2 v \frac{\partial v}{\partial y}+2 u \frac{\partial u}{\partial y}\right)=\left(2 v \frac{\partial v}{\partial x}+2 u \frac{\partial v}{\partial y}, 2 v \frac{\partial v}{\partial y}-2 u \frac{\partial v}{\partial x}\right)
$$

implying that

$$
\begin{equation*}
v \frac{\partial v}{\partial x}+u \frac{\partial v}{\partial y}=0=v \frac{\partial v}{\partial y}-u \frac{\partial v}{\partial x} \tag{1}
\end{equation*}
$$

Now, multiplying the left hand side by v and the right hand side by u we get that the expression simplifies in

$$
\left(u^{2}+v^{2}\right) \frac{\partial v}{\partial x}=0
$$

We have now two possibilities: if $u^{2}+v^{2}$ vanishes somewhere, by the assumption $|f|=$ constant we get that $u=v=0$ everywhere in Ω. Otherwise, from the above expression we deduce that $\frac{\partial v}{\partial x}=0$ in Ω. The same argument proves that $\frac{\partial v}{\partial y}=0$ by multiplying the left hand side of (1) by u and the right hand side by $-v$. This proves by part (a) that v is constant and hence as above f is constant.

