Exercises with a \star are eligible for bonus points.
2.1. Complex numbers and geometry I Denote with $A_{y}:=\{i y: y \in \mathbb{R}\} \subset \mathbb{C}$ the y-axis in the complex plane. Describe geometrically the image of A_{y} under the exponential map $\left\{e^{z}: z \in A_{y}\right\}$. Repeat the same replacing A_{y} with the x-axis $A_{x}:=\{x: x \in \mathbb{R}\} \subset \mathbb{C}$, the diagonal $D:=\{a+i a: a \in \mathbb{R}\} \subset \mathbb{C}$, and the curve $\{\log (a)+i a: a>0\} \subset \mathbb{C}$.

SOL: We recall that from the definiton of exponential function the following identity holds:

$$
e^{z}=e^{x+i y}=e^{x}(\cos (y)+i \sin (y)),
$$

for every $z=x+i y \in \mathbb{C}$. Therefore, it follows that

$$
\begin{aligned}
\exp \left(A_{y}\right) & =\{\cos (y)+i \sin (y): y \in \mathbb{R}\}, \\
\exp \left(A_{x}\right) & =\left\{e^{x}: x \in \mathbb{R}\right\}, \text { (in green in the picture) } \\
\exp (D) & =\left\{e^{a}(\cos (a)+i \sin (a)): a \in \mathbb{R}\right\}, \text { (in blue in the picture) } \\
\exp (G) & =\{a(\cos (a)+i \sin (a)): a>0\}, \text { (in red in the picture). }
\end{aligned}
$$

These sets represent geometrically in the complex plane: the unit circle, the open positive part of the x-axis, a logarithmic spiral, and an Archimedean spiral.

2.2. Complex numbers and geometry II A Möbius transformation is a map $f: \mathbb{C} \rightarrow \mathbb{C}$ defined as

$$
f(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{C}$ and $a d-c b \neq 0$.
(a) Show that the set of Möbius transformations form a group when endowed with the operation of composition $\left(\left(f_{1} \circ f_{2}\right)(z):=f_{1}\left(f_{2}(z)\right)\right)$.

SOL: We check one by one the group axioms:

- Associativity: it follows directly from the associativity of the composition of functions.
- Identity element: the identity map $f(z)=z$ is a Möbius transformation for $(a, b, c, d)=(1,0,0,0)$.
- Existence of an inverse: one can check that if $f(z)=(a z+b) /(c z+d)$ is a Möbius transformation, so it is the map $g(z)=(d z-b) /(-c z+a)$, and $(f \circ g)=(g \circ f)(z)=z$.
- Closure with respect to the composition. Given two Möbius transformations $f_{1}(z)=\left(a_{1} z+b_{1}\right) /\left(c_{1} z+d_{1}\right)$ and $f_{2}(z)=\left(a_{2} z+b_{2}\right) /\left(c_{2} z+d_{2}\right)$, we have that

$$
\left(f_{1} \circ f_{2}\right)(z)=\frac{\left(a_{1} a_{2}+b_{1} c_{2}\right) z+a_{1} b_{2}+b_{1} d_{2}}{\left(a_{2} c_{1}+c_{2} d_{1}\right) z+b_{2} c_{1}+d_{1} d_{2}}=: \frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}
$$

To check that $a^{\prime} d^{\prime}-c^{\prime} d^{\prime} \neq 0$ one can either prove it directly, or notice that

$$
\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right],
$$

and take advantage of the determinant property

$$
\begin{aligned}
a^{\prime} d^{\prime}-c^{\prime} d^{\prime} & =\operatorname{det}\left(\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]\right)=\left(a_{1} d_{1}-c_{1} b_{1}\right)\left(a_{2} d_{2}-c_{2} b_{2}\right)
\end{aligned}
$$

which is different from zero because both f_{1} and f_{2} are Möbius transformations. In fact, the above argument shows that the group of Möbius transformations is isomorphic to the group $\mathrm{GL}(2, \mathbb{C}) / \sim=\left\{A \in \mathbb{C}^{2 \times 2}: \operatorname{det}(A) \neq 0\right\} / \sim$ under the equivalence relation $A \sim \lambda A, \lambda \in \mathbb{C} \backslash\{0\}$.
(b) Show that the image of any circle by a Möbius transformation is either a circle or an affine line.

SOL: In virtue of the previous exercise, it is enough to prove this for the unit circle centered at the origin C_{1}. In fact, assuming the result true in this particular case,
then if C is a generic circle of center z_{0} and radius r and f a Möbius transformation, by setting $T(z):=r z+z_{0}$ one has that

$$
f(C)=f\left(T\left(C_{1}\right)\right)=(f \circ T)\left(C_{1}\right),
$$

and the general result follows because T is itself a Möbius transformation, and the composition preserves this property. Let $z \in C_{1}$ and $f(z)=(a z+b) /(c z+d)$. Then reversing the relation $w=f(z)$ we get that

$$
1=|z|=\left|f^{-1}(w)\right|=\left|\frac{d w-b}{-c w+a}\right|
$$

implying

$$
|d w-b|^{2}=|c w-a|^{2} \Leftrightarrow(d w-b)(\bar{d} \bar{w}-\bar{b})=(c w-a)(\bar{c} \bar{w}-\bar{a}),
$$

which gives

$$
\left(|d|^{2}-|c|^{2}\right)|w|^{2}+|b|^{2}-|a|^{2}-\Re(d \bar{b} w)+\Re(c \bar{a} w)=0 .
$$

If $|d|^{2}-|c|^{2}=0$, the above equation represents the parametric equation of an affine line (the real and imaginary parts of w appear linearly in the equation). On the other side, if $|d|^{2}-|c|^{2} \neq 0$, up to rescaling the coefficients, we can suppose that $|d|^{2}-\left|c^{2}\right|=1$. In fact, notice that if a Möbius transformation has coefficients (a, b, c, d), then the transformation with coeffients ($\lambda a, \lambda b, \lambda c, \lambda b$) represents exactly the same map for all $\lambda \in \mathbb{C} \backslash\{0\}$. Completing the square we get that

$$
0=|w|^{2}+|b|^{2}-|a|^{2}-\Re((d \bar{b}-c \bar{a}) w)=|w-d \bar{b}+c \bar{a}|^{2}-|d \bar{b}-c \bar{a}|^{2}+|b|^{2}-|a|^{2}
$$

which represents a circle with center $(d \bar{b}-c \bar{a})$ and radius $\sqrt{|d \bar{b}-c \bar{a}|^{2}-|b|^{2}+|a|^{2}}$.
2.3. Integrating over a triangle Let Ω be an open subset of \mathbb{C}. Suppose that $f: \Omega \rightarrow \mathbb{C}$ is holomorphic, and that $f^{\prime}: \Omega \rightarrow \mathbb{C}$ is continuous. Show taking advantage of the Green formula ${ }^{1}$ that

$$
\int_{T} f d z=0
$$

where the integration is along an arbitrary triangle T contained in Ω.

[^0]SOL: Write $f=u+i v$, let $\gamma(t)=x(t)+i y(t):[a, b] \rightarrow \mathbb{C}$ be a parametrization of T, and call Ω the interior of T, that is $\partial \Omega=T$. Then, by definition of complex line integration we have that

$$
\begin{aligned}
& \int_{T} f d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b}(u(\gamma(t))+i v(\gamma(t)))\left(x^{\prime}(t)+i y^{\prime}(t)\right) d t \\
& \left.\quad=\int_{a}^{b}\left(u(\gamma(t)) x^{\prime}(t)-v(\gamma(t)) y^{\prime}(t)\right)\right) d t+i \int_{a}^{b}\left(u(\gamma(t)) y^{\prime}(t)+v(\gamma(t)) x^{\prime}(t)\right) d t
\end{aligned}
$$

Set $\tilde{\gamma}(t)=(x(t), y(t))$ the identification of γ as a curve in \mathbb{R}^{2}. Then, defining the vector fields $\vec{F}(x, y)=(u(x, y),-v(x, y))$ and $\vec{G}(x, y)=(v(x, y), u(x, y))$ we get that the above integral is equal to

$$
\int_{\tilde{\gamma}} \vec{F} \cdot d r+i \int_{\tilde{\gamma}} \vec{G} \cdot d r
$$

which by Green formula and the Cauchy-Riemann equations gives finally

$$
\int_{T} f d z=\iint_{\Omega}\left(-\partial_{x} v-\partial_{y} u\right) d x d y+i \iint_{\Omega}\left(\partial_{x} u-\partial_{y} v\right) d x d y=0 .
$$

2.4. Line integral I Compute the following complex line integrals. Here $\Re(z)$ and $\Im(z)$ denote respectively the real and imaginary parts of z.
(a) $\int_{\gamma}\left(z^{2}+z\right) d z$, when γ is the segment joining 1 to $1+i$.

SOL: We parametrize γ as $\gamma(t)=1+i t, t \in[0,1]$. Then

$$
\begin{aligned}
\int_{\gamma}\left(z^{2}+z\right) d z & =\int_{0}^{1}\left((1+i t)^{2}+(1+i t)\right)(1+i t)^{\prime} d t=i \int_{0}^{1}\left(2-t^{2}+3 i t\right) d t \\
& =i(2-1 / 3+i 3 / 2)=-3 / 2+i 5 / 3
\end{aligned}
$$

(b) $\int_{\gamma}\left(\Re\left(z^{2}\right)-\Im(z)\right) d z$, when γ is the unit circle $\{z \in \mathbb{C}:|z|=1\}$.

SOL: We parametrize γ as $\gamma(t)=e^{i t}, t \in[0,2 \pi]$. Then

$$
\begin{aligned}
\int_{\gamma} & \left(\Re\left(z^{2}\right)-\Im(z)\right) d z=\int_{0}^{2 \pi}(\cos (2 t)-\sin (t))(-\sin (t)+i \cos (t)) d t \\
& =\int_{0}^{2 \pi} \sin (t)^{2}-\cos (2 t) \sin (t) d t+i \int_{0}^{2 \pi} \cos (t) \cos (2 t)-\sin (t) \cos (t) d t \\
& =\pi
\end{aligned}
$$

(c) $\int_{\gamma} \bar{z} d z$, when γ is the boundary of the half circle $\{z \in \mathbb{C}:|z|<1, \Im(z) \geq 0\}$.

SOL: We parametrize the curve γ as concatenation of $t \mapsto e^{i t}$ for $t \in[0, \pi]$ and $t \mapsto t$ for $t \in[-1,1]$. Then

$$
\begin{aligned}
\int_{\gamma} \bar{z} d z & =\int_{0}^{\pi}(\cos (t)-i \sin (t))(-\sin (t)+i \cos (t)) d t+\int_{-1}^{1} t d t \\
& =i \pi
\end{aligned}
$$

(d) Let $a, b \in \mathbb{C}$ be such that $|a|<1<|b|$. Denote with $C=\{z \in \mathbb{C}:|z|=1\}$ the unit circle in the complex plane. Show that

$$
\int_{C} \frac{d z}{(z-a)(z-b)}=\frac{2 \pi i}{a-b} .
$$

SOL: We have that

$$
\begin{aligned}
\int_{C} \frac{d z}{(z-a)(z-b)} & =\frac{1}{a-b} \int_{C}\left(\frac{1}{z-a}-\frac{1}{z-b}\right) d z \\
& =\frac{i}{a-b} \int_{0}^{2 \pi} \frac{e^{i t}}{\left(e^{i t}-a\right)}-\frac{e^{i t}}{\left(e^{i t}-b\right)} d t .
\end{aligned}
$$

We compute this integral in two steps: first, since $\left|a / e^{i t}\right|<1$, we have that

$$
\int_{0}^{2 \pi} \frac{e^{i t}}{e^{i t}-a} d t=\int_{0}^{2 \pi} \frac{1}{1-a / e^{i t}} d t=\int_{0}^{2 \pi} \sum_{n=0}^{+\infty}(-1)^{n} a^{n} e^{-i t n} d t=2 \pi
$$

because the only term that is not zero when integrated is when $n=0$. On the other side, since $|1 / b|<1$, we can rewrite

$$
\int_{0}^{2 \pi} \frac{e^{i t}}{e^{i t}-b} d t=\frac{1}{b} \int_{0}^{2 \pi} \frac{e^{i t}}{e^{i t} / b-1} d t=-\frac{1}{b} \int_{0}^{2 \pi} e^{i t} \sum_{n=0}^{+\infty} e^{i n t} b^{-n} d t=0
$$

because term by term the integral is zero. Hence,

$$
\int_{C} \frac{1}{(z-b)(z-c)} d z=\frac{4 i \pi}{a-b}
$$

as wished. In both cases, we took advantage of Fubini's theorem to interchange the integration with the sum. We recall the statement: let $\left(f_{n}\right)_{n \geq 0}$ be a sequence of functions such that

- $\int \sum_{n}\left|f_{n}\right| d x<+\infty$
- $\sum_{n} \int\left|f_{n}\right| d x<+\infty$
then $\sum_{n} \int f_{n} d x=\int \sum_{n} f d x$.
2.5. Line integral II Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be any complex polynomial, that is $f(z)=$ $a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ for some $n \in \mathbb{N}$ and $a_{0}, \ldots, a_{n} \in \mathbb{C}$. Show that the line integral of f along any circle is equal to zero.
Hint: first prove this for the unit circle $\{z:|z|=1\}$ and $f(z)=z^{n}$ for $n \geq 0$. Then, deduce the general result.

SOL: Denote with $C_{1}=\{z:|z|=1\}$ the unit circle. Let $n \geq 0$. Then

$$
\int_{C_{1}} z^{n} d z=i \int_{0}^{2 \pi} e^{i n t} e^{i t} d t=\int_{0}^{2 \pi} e^{i t(n+1)} d t=\left.\frac{e^{i t(n+1)}}{n+1}\right|_{0} ^{2 \pi}=0 .
$$

By linearity of the integral, we deduce that every polynomial has zero integral over the unit circle. Let C be a generic circle of radius $r>0$ and center $z_{0} \in \mathbb{C}$. Notice that $T(z)=r z+z_{0}$ is a complex polynomial and sends the unit circle to C. Then, we have for a generic polynomial f that

$$
\int_{C} f d z=\int_{T\left(C_{1}\right)} f d z=\int_{C_{1}}(f \circ T) T^{\prime} d z=r \int_{C_{1}} f \circ T d z=0
$$

because $f \circ T$ is a polynomial, and we can apply the result previously proven.

[^0]: ${ }^{1}$ Let C be a positively oriented, piecewise-smooth simple curve in the plane, and let D be the region bounded by C. If $\vec{F}=\left(F^{1}, F^{2}\right): \bar{D} \rightarrow \mathbb{R}^{2}$ is a vector field whose components have continuous partial derivatives, then Green's theorem states: $\int_{C} \vec{F} \cdot d r=\iint_{D}\left(\partial_{x} F^{2}-\partial_{y} F^{1}\right) d x d y$.

