Exercises with $a \star$ are eligible for bonus points.
4.1. Cauchy Formula Compute the following integrals
(a) $\int_{0}^{2 \pi} e^{e^{i t}} d t$.

SOL: Express this as a line integral over the unit circle $z=e^{i t}$:

$$
\int_{0}^{2 \pi} e^{e^{i t}} d t=\int_{0}^{2 \pi} \frac{e^{e^{i t}}}{e^{i t}} e^{i t} d t=-i \int_{0}^{2 \pi} \frac{e^{e^{i t}}}{e^{i t}} i e^{i t} d t=-i \int_{|z|=1} \frac{e^{z}}{z} d z
$$

By the Cauchy integral formula, we get that it is equal to $-i(2 \pi i) e^{0}=2 \pi$.
(b) $\int_{\gamma} \frac{i z}{(z-\alpha)(z+i \alpha)} d z$, when $\gamma=\{z \in \mathbb{C}:|z|=2\}$ and $\alpha \in[-1,1]$.

SOL: We have

$$
\int_{\gamma} \frac{i z}{(z-\alpha)(z+i \alpha)} d z=\frac{1}{2} \int_{\gamma} \frac{i-1}{z+i \alpha}+\frac{1+i}{z-\alpha} d z=\frac{2 \pi i}{2}(i-1+1+i)=-2 \pi,
$$

by applying the Cauchy integral formula to both terms in the last integral.
(c) $\int_{\gamma} \frac{z^{2}+z}{z^{2}+1} d z$, when $\gamma=\{z \in \mathbb{C}:|z|=3\}$.

SOL: We have that

$$
\begin{aligned}
\int_{\gamma} \frac{z^{2}+z}{z^{2}+1} d z & =\int_{\gamma} \frac{z(z+1)}{(z+i)(z-i)} d z=\frac{1}{2} \int_{\gamma} \frac{z(1+i)}{z+i}+\frac{z(1-i)}{z-i} d z \\
& =\frac{2 \pi i}{2}(-i(1+i)+i(1-i))=\pi i(-i+1+i+1)=2 \pi i
\end{aligned}
$$

by applying the Cauchy integral formula to both terms in the last integral.
(d) $\int_{\gamma} \sin (z)^{2} \cos (z) d z$, when γ is the 'infinity symbol' $t \mapsto \sin (t)+i \sin (t) \cos (t)$, $t \in[0,2 \pi]$.

SOL: Notice that $f(z)=\sin (z)^{2} \cos (z)$ is holomorphic, and γ is closed. Hence, by Cauchy Theorem, the above integral is equal to zero. Alternatively, notice that $F(z)=\sin ^{3}(z) / 3$ is a primitive of f, and therefore the integral depends only on the end points by the Fundamental Theorem of Calculus, and since γ is closed, the integral must vanish.

4.2. The complex logarithm Let

$$
U=\mathbb{C} \backslash\{z \in \mathbb{C}: \Im(z)=0, \Re(z) \leq 0\}
$$

be the open set obtained by removing the negative real axis from the complex plane \mathbb{C}. The complex logarithm is defined in U as

$$
\log (z):=\log (|z|)+i \arg (z), \quad z=|z| e^{i \arg (z)}
$$

where $\arg (z) \in]-\pi, \pi[$. Show that for every $z \in U$

$$
\log (z)=\int_{\gamma} \frac{1}{w} d w
$$

where γ is the segment connecting 1 to z.
Hint: integrate over a well chosen closed curve containing γ and passing through $|z|$.
SOL: Fix $z \in U$ and let $\theta=\arg (z) \in]-\pi, \pi\left[\right.$ so that $z=|z| e^{i \theta}$. Then, consider the closed curve σ defined as the concatenation of: $\gamma_{1}(t)=(1-t)+t|z|, t \in[0,1]$ (the segment joining 1 with $|z|$), then $\gamma_{2}(t)=|z| e^{i t}$ for $t \in[0, \theta]$ (the arc centred at the origin connecting $|z|$ to z), and finally γ^{-}, (the segment joining z to 1). Since $w \mapsto 1 / w$ is holomorphic in U, by Cauchy Theorem we have by integrating over σ that

$$
\begin{aligned}
\int_{\gamma} \frac{1}{w} d w & =\int_{\gamma_{1}} \frac{1}{w} d w+\int_{\gamma_{2}} \frac{1}{w} d w=\int_{0}^{1} \frac{|z|-1}{(1+t)+t|z|} d t+\int_{0}^{\theta} \frac{i|z| e^{i t}}{|z| e^{i t}} d t \\
& =\left.\log ((1+t)+t|z|)\right|_{t=0} ^{t=1}+i \theta=\log (|z|)+i \arg (z)
\end{aligned}
$$

which is exactly the definition of the complex logarithm.
4.3. Quotients and integration Let Ω be an open subset of $\mathbb{C}, f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function, and $\gamma:[a, b] \rightarrow \Omega$ a smooth, closed curve. Suppose $|f(z)-1|<1$ for all $z \in \Omega$. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

SOL: Since $f(z)$ lies in the open ball of radius 1 centered in 1, we deduce that $f(z) \neq 0$ for all $z \in \Omega$. This implies that f^{\prime} / f is holomorphic and well defined in Ω. Hence, by Cauchy Theorem, the integral along the closed curve γ must be equal to zero.
4.4. Generalized Liouville Prove the following theorem: every holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
|f(w)| \leq c|w|^{n}, \quad \text { for all } w \in\{z \in \mathbb{C}:|z|>C\}
$$

for some $c, C>0$ and $n \geq 0$, is a complex polynomial of degree at most n.
SOL: Let $f, n \geq 0$, and $C, c>0$ like in the above statement. Fix $z_{0} \in \mathbb{C}$, let $R>\left|z_{0}\right|+C$ and set $k>n$. By Cauchy integral formula we have that

$$
f^{(k)}\left(z_{0}\right)=\frac{k!}{2 \pi i} \int_{\left|z-z_{0}\right|=R} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} d z,
$$

implying that

$$
\begin{aligned}
\left|f^{(k)}\left(z_{0}\right)\right| & =\left|\frac{k!}{2 \pi i} \int_{\left|z-z_{0}\right|=R} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} d z\right| \leq \frac{k!}{2 \pi} \int_{\left|z-z_{0}\right|=R} \frac{|f(z)|}{\left|z-z_{0}\right|^{k+1}} d z \\
& \leq \frac{k!}{2 \pi} \int_{\left|z-z_{0}\right|=R} \frac{c|z|^{n}}{\left|z-z_{0}\right|^{k+1}} d z \\
& =\frac{k!}{2 \pi} \int_{0}^{2 \pi} \frac{c\left|R e^{i t}+z_{0}\right|^{n}}{R^{k}} d t \\
& <\frac{k!}{2 \pi} \int_{0}^{2 \pi} \frac{2^{n} c R^{n}}{R^{k}} d t=\frac{c 2^{n}(n+1)!}{R^{k-n}},
\end{aligned}
$$

where in the last inequality we used that $R>\left|z_{0}\right|$ to estimate $\left|R e^{i t}+z_{0}\right|^{n} \leq\left(\left|R e^{i t}\right|+\right.$ $\left.\left|z_{0}\right|\right)^{n}<(2 R)^{n}=2^{n} R^{n}$. Since R is arbitrary and $k-n \geq 1$, letting $R \rightarrow+\infty$ we get that $\left|f^{k}\left(z_{0}\right)\right|=0$. Hence, $f^{(k)} \equiv 0$ in \mathbb{C}, since z_{0} is also arbitrary. Therefore, expressing f as a power serie $f(z)=\sum_{k=0}^{+\infty} a_{k} z^{k}$ we get that $a_{k}=0$ for all $k>n$, implying that f must be a complex polynomial of degree at most n.

