Exercises with $a \star$ are eligible for bonus points.
5.1. Discrete maps A subset \mathcal{A} of an domain $\Omega \subset \mathbb{C}$ is called discrete in Ω if it has no limit point in Ω. A function $f: \Omega \rightarrow \mathbb{C}$ is called discrete if for every $w \in \mathbb{C}$ the set

$$
E_{w}:=\{z \in \Omega: f(z)=w\}
$$

is discrete in Ω.
(a) Let Ω be connected and open. Show that every non-constant holomorphic function $f: \Omega \rightarrow \mathbb{C}$ is discrete.

SOL: Fix $w \in \Omega$ and define $g: \Omega \rightarrow \mathbb{C}$ as $g(z)=f(z)-w$. Then $E_{w}=\{z \in$ $\Omega: f(z)=w\}=\{z \in \Omega: f(z)-w=0\}=\{z \in \Omega: g(z)=0\}$. Since g is also non-constant and holomorphic, we know that its set of zeros has to be discrete (all zeros are isolated), and consequently E_{w} is also discrete.
(b) Show that if Ω is compact, then $\mathcal{A} \subset \Omega$ is discrete if and only if it has finite cardinality. Is this true if Ω is merely bounded?

SOL: If the cardinality of \mathcal{A} if finite, then all points are isolated and hence the set is discrete. Suppose now \mathcal{A} is discrete and Ω is compact. Suppose on the contrary \mathcal{A} is infinite and that there exists an injection $j: \mathbb{N} \rightarrow \mathcal{A}$. The associated sequence $x_{n}=j(n)$ has the property to take all different values and to be bounded since it is in particular a sequence in Ω which is bounded. By Bolzano-Weierstrass, there exist a subsequence $x_{n_{k}}$ converging to x_{∞} in $\bar{\Omega}$. If Ω is compact, by Heine-Borel $\bar{\Omega}=\Omega$ and hence x_{∞} is a limit point. But this contradicts the assumption that \mathcal{A} is discrete Hence there is no injection j and \mathcal{A} has finite cardinality. On the other hand, if Ω is only bounded, the limit point x_{∞} might belong to $\mathbb{C} \backslash \Omega$, and hence it does not contradict the existence of j. For instance the set $\{1 / n: n \in \mathbb{N}\}$ is not discrete in $[0,1]$ but it is discrete in $(0,1]$.

5.2. Order of zeros

(a) Find the zeros of the function $z \mapsto \cos \left(z^{2}\right)$ and determine their order.

SOL: Taking advantage of the definition of complex cosine, we have that $\cos \left(z_{0}^{2}\right)=0$ if $z_{0}= \pm \sqrt{\frac{\pi(1+2 k)}{2}}$ or $z_{0}= \pm i \sqrt{\frac{\pi(1+2 k)}{2}}$ for $k \geq 0$. Since $\left(\cos \left(z^{2}\right)\right)^{\prime}=-2 z \sin \left(z^{2}\right)$ is different from zero when evaluated in z_{0} we deduce that $\operatorname{ord}_{z_{0}}\left(\cos \left(z^{2}\right)\right)=1$.
(b) Let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ two holomorphic functions that vanish simultaneously at some point $z_{0} \in \mathbb{C}$ with order $a \in \mathbb{N}$ and $b \in \mathbb{N}$ respectively. Show that the function $h=f+g$ vanish at z_{0} with order $c \geq \min \{a, b\}$. Give an explicit example realizing the strict inequality.

SOL: By definition of order $f\left(z_{0}\right)=\cdots=f^{(a-1)}\left(z_{0}\right)=g\left(z_{0}\right)=\cdots=g^{(b-1)}\left(z_{0}\right)=0$, $f^{(a)}\left(z_{0}\right) \neq 0$ and $g^{(b)}\left(z_{0}\right) \neq 0$. It follows directly that $h^{(k-1)}\left(z_{0}\right)=0$ for $k=$ $0, \ldots, \min \{a, b\}-1$ by linearity of the differentiation, showing that $c \geq \min \{a, b\}$. Notice that if $g=-f$ then h has order infinity at z_{0} because $h \equiv 0$.
5.3. Taylor series Compute the radius of convergence of the Taylor serie of the function $f(z)=\frac{\sin (z)}{z^{2}-i}$ in $z_{0}=0$ and $z_{0}=1$.
SOL: We note the two singularities: $z^{2}+i=0$, when $z=i+1$ or $z=-1-i$. Also, $\sin (1+i) \neq 0$ and $\sin (-1-i) \neq 0$. Therefore, the radius of convergence of the Taylor series ${ }^{1}$ in $z_{0}=0$ is $|1+i|=|-1-i|=\sqrt{2}$. In $z_{0}=1$ the radius of convergence is $\min \{|(1+i)-1|,|(-1-i)-1|\}=1$.

5.4. A complex ODE Take advantage of the power series expansion to find $f: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic such that $f^{\prime}(z)=z^{2} f(z)$ and $f(0)=1$.
SOL: Write $f(z)=\sum_{n \geq 0} a_{n} z^{n}$. Then,

$$
f^{\prime}(z)=z^{2} f(z) \Leftrightarrow \sum_{n \geq 1} n a_{n} z^{n-1}=\sum_{n \geq 0} a_{n} z^{n+2} .
$$

[^0]Shifting the indices we get that

$$
a_{1}+2 a_{2} z+\sum_{n \geq 1}(n+1) a_{n+1} z^{n}=\sum_{n \geq 2} a_{n-2} z^{n} .
$$

Since $f(0)=1$, this impose the following relations on the coefficients

$$
\left\{\begin{array}{l}
a_{0}=1, a_{1}=a_{2}=0, \\
a_{n+1}=\frac{a_{n-2}}{n+1},
\end{array} n \geq 2 .\right.
$$

From $a_{n+1}=\frac{a_{n-2}}{n+1}$ when $n \geq 2$ we get $a_{n}=\frac{a_{n-3}}{n}$ for all $n \geq 3$. In particular

$$
a_{3}=\frac{a_{0}}{3}=\frac{1}{3} .
$$

Hence, if $n=3 k$ we get that

$$
a_{3 k}=\frac{a_{3(k-1)}}{3 k}=\frac{a_{3(k-2)}}{3 k(3(k-1))}=\cdots=\frac{a_{3}}{3^{k-1} k!}=\frac{1}{3^{k} k!} .
$$

On the other side, if n is not a multiple of k one can easily prove by induction that $a_{n}=0$ taking as base case $a_{1}=a_{2}=0$. Finally we get

$$
f(z)=\sum_{k \geq 0} \frac{z^{3 k}}{3^{k} k!}=\sum_{k \geq 0} \frac{\left(z^{3} / 3\right)^{k}}{k!}=e^{z^{3} / 3} .
$$

5.5. Riemann continuation Theorem Let $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be holomorphic. Show that the following are equivalent:

1. There exists $g: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic, such that $g(z)=f(z)$ for all $z \neq 0$.
2. There exists $g: \mathbb{C} \rightarrow \mathbb{C}$ continuous, such that $g(z)=f(z)$ for all $z \neq 0$.
3. There exists $\varepsilon>0$ such that f is bounded in $\dot{B}_{\varepsilon}=\{z \in \mathbb{C}:|z|<\varepsilon\} \backslash\{0\}$.
4. $\lim _{z \rightarrow 0} z f(z)=0$.

Hint: to prove 4. \Rightarrow 1. define $h(z)=z f(z)$ when $z \neq 0$ and $h(0)=0$. Analyse the relation between $f(z), h(z)$ and $k(z):=z h(z)$.

SOL: Notice that the implications $1 . \Rightarrow 2 . \Rightarrow 3 . \Rightarrow 4$. are elementary. We are left to show $4 . \Rightarrow 1$. Introduce the function

$$
h(z):= \begin{cases}z f(z), & z \neq 0 \\ 0, & z=0\end{cases}
$$

and set $k(z)=z h(z)$. By assumption 4. h and k are holomorphic in $\mathbb{C} \backslash\{0\}$ and continuous in the whole complex plane \mathbb{C}. Since $k(z)=k(0)+z h(z)$ we deduce that k is complex differentiable in zero and hence holomorphic in \mathbb{C}. By Taylor representation of holomorphic functions, $k(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ for coefficients $a_{0}, a_{1}, \cdots \in \mathbb{C}$. Since $k(0)=0$ and $k^{\prime}(0)=h(0)=0$ we deduce that $k(z)=a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\cdots=z^{2}\left(a_{2}+a_{3} z+a_{4} z^{2}+\ldots\right)$. Now, recalling that $k(z)=z^{2} f(z)$ for $z \neq 0$ we deduce that $g(z):=a_{2}+a_{3} z+a_{4} z^{2}+\ldots$ is indeed an holomorphic extension of f in \mathbb{C}.

[^0]: ${ }^{1}$ Recall that if $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\} \subset \Omega$, then the Taylor serie of f in z_{0} has radius of convergence at least r.

