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Exercises with a ⋆ are eligible for bonus points.

5.1. Discrete maps A subset A of an domain Ω ⊂ C is called discrete in Ω if it has
no limit point in Ω. A function f : Ω → C is called discrete if for every w ∈ C the set

Ew := {z ∈ Ω : f(z) = w}

is discrete in Ω.

(a) Let Ω be connected and open. Show that every non-constant holomorphic function
f : Ω → C is discrete.

SOL: Fix w ∈ Ω and define g : Ω → C as g(z) = f(z) − w. Then Ew = {z ∈
Ω : f(z) = w} = {z ∈ Ω : f(z) − w = 0} = {z ∈ Ω : g(z) = 0}. Since g is also
non-constant and holomorphic, we know that its set of zeros has to be discrete (all
zeros are isolated), and consequently Ew is also discrete.

(b) Show that if Ω is compact, then A ⊂ Ω is discrete if and only if it has finite
cardinality. Is this true if Ω is merely bounded?

SOL: If the cardinality of A if finite, then all points are isolated and hence the set
is discrete. Suppose now A is discrete and Ω is compact. Suppose on the contrary
A is infinite and that there exists an injection j : N → A. The associated sequence
xn = j(n) has the property to take all different values and to be bounded since it is
in particular a sequence in Ω which is bounded. By Bolzano-Weierstrass, there exist
a subsequence xnk

converging to x∞ in Ω̄. If Ω is compact, by Heine-Borel Ω̄ = Ω
and hence x∞ is a limit point. But this contradicts the assumption that A is discrete
Hence there is no injection j and A has finite cardinality. On the other hand, if Ω
is only bounded, the limit point x∞ might belong to C \ Ω, and hence it does not
contradict the existence of j. For instance the set {1/n : n ∈ N} is not discrete in
[0, 1] but it is discrete in (0, 1].

5.2. Order of zeros

(a) Find the zeros of the function z 7→ cos(z2) and determine their order.

SOL: Taking advantage of the definition of complex cosine, we have that cos(z2
0) = 0

if z0 = ±
√

π(1+2k)
2 or z0 = ±i

√
π(1+2k)

2 for k ≥ 0. Since (cos(z2))′ = −2z sin(z2) is
different from zero when evaluated in z0 we deduce that ordz0(cos(z2)) = 1.
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(b) Let f, g : C → C two holomorphic functions that vanish simultaneously at some
point z0 ∈ C with order a ∈ N and b ∈ N respectively. Show that the function
h = f + g vanish at z0 with order c ≥ min{a, b}. Give an explicit example realizing
the strict inequality.

SOL: By definition of order f(z0) = · · · = f (a−1)(z0) = g(z0) = · · · = g(b−1)(z0) = 0,
f (a)(z0) ̸= 0 and g(b)(z0) ̸= 0. It follows directly that h(k−1)(z0) = 0 for k =
0, . . . , min{a, b} − 1 by linearity of the differentiation, showing that c ≥ min{a, b}.
Notice that if g = −f then h has order infinity at z0 because h ≡ 0.

5.3. Taylor series Compute the radius of convergence of the Taylor serie of the
function f(z) = sin(z)

z2−i
in z0 = 0 and z0 = 1.

SOL: We note the two singularities: z2 + i = 0, when z = i + 1 or z = −1 − i. Also,
sin(1 + i) ̸= 0 and sin(−1 − i) ̸= 0. Therefore, the radius of convergence of the Taylor
series1 in z0 = 0 is |1 + i| = |−1 − i| =

√
2. In z0 = 1 the radius of convergence is

min{|(1 + i) − 1|, |(−1 − i) − 1|} = 1.

1 + i

−1− i

0 1

5.4. A complex ODE Take advantage of the power series expansion to find
f : C → C holomorphic such that f ′(z) = z2f(z) and f(0) = 1.

SOL: Write f(z) = ∑
n≥0 anzn. Then,

f ′(z) = z2f(z) ⇔
∑
n≥1

nanzn−1 =
∑
n≥0

anzn+2.

1Recall that if f : Ω → C is holomorphic and {z ∈ C : |z − z0| < r} ⊂ Ω, then the Taylor serie of f
in z0 has radius of convergence at least r.
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Shifting the indices we get that

a1 + 2a2z +
∑
n≥1

(n + 1)an+1z
n =

∑
n≥2

an−2z
n.

Since f(0) = 1, this impose the following relations on the coefficientsa0 = 1, a1 = a2 = 0,

an+1 = an−2
n+1 , n ≥ 2.

From an+1 = an−2
n+1 when n ≥ 2 we get an = an−3

n
for all n ≥ 3. In particular

a3 = a0

3 = 1
3 .

Hence, if n = 3k we get that

a3k = a3(k−1)

3k
= a3(k−2)

3k(3(k − 1)) = · · · = a3

3k−1k! = 1
3kk! .

On the other side, if n is not a multiple of k one can easily prove by induction that
an = 0 taking as base case a1 = a2 = 0. Finally we get

f(z) =
∑
k≥0

z3k

3kk! =
∑
k≥0

(z3/3)k

k! = ez3/3.

5.5. Riemann continuation Theorem Let f : C \ {0} → C be holomorphic. Show
that the following are equivalent:

1. There exists g : C → C holomorphic, such that g(z) = f(z) for all z ̸= 0.

2. There exists g : C → C continuous, such that g(z) = f(z) for all z ̸= 0.

3. There exists ε > 0 such that f is bounded in Ḃε = {z ∈ C : |z| < ε} \ {0}.

4. limz→0 zf(z) = 0.

Hint: to prove 4. ⇒ 1. define h(z) = zf(z) when z ̸= 0 and h(0) = 0. Analyse the
relation between f(z), h(z) and k(z) := zh(z).

SOL: Notice that the implications 1. ⇒ 2. ⇒ 3. ⇒ 4. are elementary. We are left to
show 4. ⇒ 1. Introduce the function

h(z) :=

zf(z), z ̸= 0,

0, z = 0,
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and set k(z) = zh(z). By assumption 4. h and k are holomorphic in C \ {0}
and continuous in the whole complex plane C. Since k(z) = k(0) + zh(z) we
deduce that k is complex differentiable in zero and hence holomorphic in C. By
Taylor representation of holomorphic functions, k(z) = a0 + a1z + a2z

2 + . . . for
coefficients a0, a1, · · · ∈ C. Since k(0) = 0 and k′(0) = h(0) = 0 we deduce that
k(z) = a2z

2 + a3z
3 + a4z

4 + · · · = z2(a2 + a3z + a4z
2 + . . . ). Now, recalling that

k(z) = z2f(z) for z ̸= 0 we deduce that g(z) := a2 + a3z + a4z
2 + . . . is indeed an

holomorphic extension of f in C.
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