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Exercises with a % are eligible for bonus points.

7.1. Calculus of residues Determine the order of the poles of the following functions
and compute their residue at the indicated points:

1 sin(z) cos(z) 1
FGSQi(Z2+4), reso< 2 ), I"GSO< 22 >, resl(25_1>.

SOL: Since (1/(22+4))™' = (22 +4) = (2 — 2i)(z + 2i) has a zero of order 1 in 2i, we
get that 1/(2% +4) has a pole of order 1 at the same point. The residue is given by

1 1 1
= lim(z — 2i)——

Fesai 2244 o 22+4 42"

For the second function, taking advantage of the Taylor expansion of sin(z) at 0 we
have that

Sin 9 Z

k=0

_1)k 2k+1

L1
Ok 1 *,;

_1)k 2k—1

2k + 1)’

showing at the same time that the pole at zero is of order 1 and the residue is

sin(z)

=1

resp

We argue similarly for the third function:

COS i _1>k 2k L +oo (_1>k22k—2
2 Z = o

and hence the pole is of order 2, and

s, cosgz) _0
z

Finally, (1/(2° —1))~! = 2° — 1 has a zero of order 1 in 1, and therefore the pole of
1/(2°> — 1) is also of order 1 by definition. The residue is

1 (=1 1 1
25— 1 291 25 —1 251524 5

res;

where we took advantage of Bernoulli-I'Hopital’s rule to compute the limit.

7.2. Complex integrals Compute the following complex integrals taking advantage
of the Residue Theorem.
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SOL: The poles of f(z) = €*/(2?(z — 1)) are at 0 and 1, with multiplicity 2 and 1
respectively. We compute

reso(f) = lim(22f(2))" = lim< < >/ = -2

z—0 z—0 (

and

res)(f) = lim(z — 1) f(z) =e.

z—1

By the Residue Theorem, since 0 and 1 are in the interior of the disc of radius 2
centered at the origin, we can compute

62
——dz = 2mi(e — 2).
/z|=2 22(z —1) @ = 2mie - 2)

(b)

1
———— d=z.
/|z1 22(22 — 4)e? ©

SOL: The poles of f(z) = 1/(2%(2% — 4)) are at 0, v/2 and —/2 with multiplicity 2,
1, 1 respectively. However, since only 0 belongs to the interior of the circumference of
radius 1 centered at the origin, we get that

1 ; o 2 - 1 room
/z|1 m dz = 2miresy(f) = 2mi lli%(z f(z) = 2mi hm((z24)ez) =5

z—0

(c) X
/|z|:1/2 zsin(1/z) dz.

SOL: By parametrizing the contour as t — /2 we get that

1 2m et /2 1
[ g,
2j=1/2 zsin(1/2) 0 €%/2sin(2e %) lwj=2 w sin(w)
where we recognised t — 2e~% as the circle of radius 2 oriented in the clockwise
direction (hence the change of sign). The only pole contained in |w| < 2is z =0, and

it is of order 2 (arguing like in Exercise 7.1). We get

1 : 1 . w?
/ ———dw = 271 res()(,) = 27 lim (> =0.
lwl=2 w sin(w) w sin(w) w—0\ w sin(w)
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(d)

. Z?
v(z=19)(z+2)(z—4)
for any simple closed curve v that does not intersect the points {i, —2,4}.

SOL: The poles of f(z) = W are all of order 1, and equal to i, —2, and 4.

The associated residues are

1
SRR ICEi)
B 1
s f = Gy
resy [ = 6(41— D

The value of the integral depends on weather or not the poles are inside the curve ~:

1 L6 L) LW
/7(z—i)(z+2)(z—4)dz_Qm((Z—l—i)(i—él)+6(2+i)+6(4—i)>’

where here 1, : C — {0, 1} is the indicator function defined as

1.(2) 1, if z belongs to the open interior of ~,
2) —
K 0, otherwise.

7.3. Poles at infinity Let f: C — C be holomorphic. We say that f has a pole
at infinity of order N € N if the function g(z) := f(1/z) has a pole of order N at
the origin in the usual sense. Prove that if f : C — C has a pole of order N € N at
infinity, then it has to be a polynomial of degree N € N.

SOL: Since f is holomorphic, the expansion
400
f(Z) = Z akzk7
k=0

converges in any ball centered in 0. If f has a pole at infinity of order N, by definition
for z #0

9(z) = F(1/2) = ZOO
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has a pole of order N at zero, which means

+oo
z) =Y apVF
k=0

is holomorphic in a neighbourhood of 0. This implies that a; = 0 for every k > N
and ay # 0, proving that

N
= Z akzk7
k=0
that is, f is a polynomial of degree N as claimed.

7.4. The Gamma function Let Z_ := {0,—1,—2,...} the set of all non-positive
integers, and define for all 7 € R the set U, == {z € C: R(2) > 1,2 ¢ Z_}, and
U:=C\Z_.

(a) Show that the function defined by the complex improper Riemann integral

_ Foo —tpz—1
['(z) = et dt
0

is well defined for all z € U;. (Here t*~! = exp((z — 1) log(t))).

SOL: First of all, fix z € U;. Then, R(z — 1) > 0 by definition of U;, and therefore
there exists a > 0 large enough (depending on R(z)) such that R(z — 1)log(t) < t/2
for all ¢ > a (this follows from the elementary observation limg_, . log(s)/s = 0).
Now for every n > a one has that

/n e—ttz—l dt‘ _ /n €_t6( (z—1)+iS(2—1)) log(t) dt‘

_ /" ot i S (1) log(t) JR(>—1) log (1) dt‘

</ —t|ez\yz 1) log(t) || R(z—1) log(t) |dt /ne—teﬂ?(z l)log()dt

a

</ M2 g = [—2e )= — _9e=0/2 4 902,

On the other side, notice that on the interval [0, a] the function ¢+ e=**RE=D®) jg
continuous, and therefore the integral [i'|e~t*~!| dt =: a is well defined. Hence, we
conclude that the improper integral defining I' converges absolutely:

lim / |€—tt2—1|dt:/ |6—tt2—1|dt—|— 1_1)5{1 / |€_ttz_1|dt§a—26_“/2<—|—oo
0 n o Jq

n—+oo Jo

proving that I'(z) is well defined for all z € U;.
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(b) Prove that I' is holomorphic in Uj.

Hint: First show that the functions of the sequence (I';)nen given by truncating the
integral at height n (T,,(z) = [o' e 't*~' dt) are holomorphic. Then, show that T, — T
uniformly in all compact subsets of U .

SOL: Define the sequence

(Pn<z>>n€N = /n eitt271 dt.
0

We first prove that z — I',(2) is continuous: let ¢ > 0 and fix w € U; and n € N.
Since z — t*~! is continuous in U;, there exists § > 0 such that for every v € C such
that |w — v| < & one has that [t*~! —¢*"!| < e/(1 —e™) and v € U;. In this case we
can perform the following estimate:

T, (w) — To(v)] < /0” e g d < (1— e )e/(1— e ™) =&,

proving the continuity of I',, in w € U; arbitrary, and therefore in all U;. By Morera’s
Theorem, we prove I',, holomorphic in U; by checking that [, I',(z)dz = 0 for all
triangle T' C U;. Now, observe that for such a given triangle

/Fn(z)dz:// et dtdz:/ /e_ttz_l dzdt:/ 0dz =0,
T 7 Jo o Jr 0

since z — t*~1 is holomorphic for all ¢+ > 0, and we can interchange the integration
because both T" and [0, n] are compact, and (¢, z) — e ‘¢*~! is continuous and hence
uniformly bounded in [0,n] x 7. This shows that (I',),en define a sequence of
holomorphic functions on U;. By taking advantage of Theorem 5.2 of last lecture, to
show that I' is holomorphic in U is suffices to prove that I', — I' uniformly on every
compact subset of Uy. Let K C U; be compact, and let b = max{R(z—1) : z € K} > 0.
Let N = N(b) > 0 big enough so that t/2 > blog(t) for all ¢t > N. Then, for all
z € K and n > N one has that
+00 400
IT(z) = Th(2)| < / et Dloelt) gy < / e~tebloe) gt < 9e7 21

n

which converges to zero uniformly in K.
(c) Show that I'(z + 1) = 2I'(2) for all z € Uj.

SOL: This follows by integration by parts:

+o0 400
['(z+1)= /0 e ' dt = [—e | + /0 etz dt = 2T(2).
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(d) Deduce that I' allows a unique holomorphic extension to Up.

SOL: Define the function T’ on Uy by setting

~ I'z+1
Py = et
z
Since z € Uy implies z +1 € U; and z # 0, we deduce that [ is a well defined
holomorphic function. On the other side, by the previous point I' coincides with I" on
Uy, showing that it is the unique analytic continuation of I' from U; to U,.

(e) Deduce that I' allows a unique holomorphic extension to U.

SOL: We construct the extension on U inductively on m € Ny over U_,, » preserving
the property I'(z+ 1) = 2I'(z). The case m = 0 has been proved in the previous point.
Supposing now I' extended in U_,, o, then

N'z+1
F(Z) = (Z), zZ € Uf(erl)/Q-
defines again an analytic extension, agreeing with the previous one on the set U_,, /5.
The property I'(z + 1) = 2I'(z) is ensured by the very definition, an the uniqueness

by the properties of analytic functions.
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