Exercises with $a \star$ are eligible for bonus points.
7.1. Calculus of residues Determine the order of the poles of the following functions and compute their residue at the indicated points:

$$
\operatorname{res}_{2 i}\left(\frac{1}{z^{2}+4}\right), \quad \operatorname{res}_{0}\left(\frac{\sin (z)}{z^{2}}\right), \quad \operatorname{res}_{0}\left(\frac{\cos (z)}{z^{2}}\right), \quad \operatorname{res}_{1}\left(\frac{1}{z^{5}-1}\right)
$$

SOL: Since $\left(1 /\left(z^{2}+4\right)\right)^{-1}=\left(z^{2}+4\right)=(z-2 i)(z+2 i)$ has a zero of order 1 in $2 i$, we get that $1 /\left(z^{2}+4\right)$ has a pole of order 1 at the same point. The residue is given by

$$
\operatorname{res}_{2 i} \frac{1}{z^{2}+4}=\lim _{z \rightarrow 2 i}(z-2 i) \frac{1}{z^{2}+4}=\frac{1}{4 i} .
$$

For the second function, taking advantage of the Taylor expansion of $\sin (z)$ at 0 we have that

$$
\frac{\sin (z)}{z^{2}}=z^{-2} \sum_{k=0}^{+\infty} \frac{(-1)^{k} z^{2 k+1}}{(2 k+1)!}=z^{-1}+\sum_{k=1}^{+\infty} \frac{(-1)^{k} z^{2 k-1}}{(2 k+1)!}
$$

showing at the same time that the pole at zero is of order 1 and the residue is

$$
\operatorname{res}_{0} \frac{\sin (z)}{z^{2}}=1
$$

We argue similarly for the third function:

$$
\frac{\cos (z)}{z^{2}}=z^{-2} \sum_{k=0}^{+\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}=z^{-2}+\sum_{k=1}^{+\infty} \frac{(-1)^{k} z^{2 k-2}}{(2 k)!}
$$

and hence the pole is of order 2 , and

$$
\operatorname{res}_{0} \frac{\cos (z)}{z^{2}}=0
$$

Finally, $\left(1 /\left(z^{5}-1\right)\right)^{-1}=z^{5}-1$ has a zero of order 1 in 1 , and therefore the pole of $1 /\left(z^{5}-1\right)$ is also of order 1 by definition. The residue is

$$
\operatorname{res}_{1} \frac{1}{z^{5}-1}=\lim _{z \rightarrow 1} \frac{(z-1)}{z^{5}-1}=\lim _{z \rightarrow 1} \frac{1}{5 z^{4}}=\frac{1}{5}
$$

where we took advantage of Bernoulli-l'Hôpital's rule to compute the limit.
7.2. Complex integrals Compute the following complex integrals taking advantage of the Residue Theorem.
(a)

$$
\int_{|z|=2} \frac{e^{z}}{z^{2}(z-1)} d z
$$

SOL: The poles of $f(z)=e^{z} /\left(z^{2}(z-1)\right)$ are at 0 and 1 , with multiplicity 2 and 1 respectively. We compute

$$
\operatorname{res}_{0}(f)=\lim _{z \rightarrow 0}\left(z^{2} f(z)\right)^{\prime}=\lim _{z \rightarrow 0}\left(\frac{e^{z}}{(z-1)}\right)^{\prime}=-2
$$

and

$$
\operatorname{res}_{1}(f)=\lim _{z \rightarrow 1}(z-1) f(z)=e .
$$

By the Residue Theorem, since 0 and 1 are in the interior of the disc of radius 2 centered at the origin, we can compute

$$
\int_{|z|=2} \frac{e^{z}}{z^{2}(z-1)} d z=2 \pi i(e-2) .
$$

(b)

$$
\int_{|z|=1} \frac{1}{z^{2}\left(z^{2}-4\right) e^{z}} d z
$$

SOL: The poles of $f(z)=1 /\left(z^{2}\left(z^{2}-4\right)\right)$ are at $0, \sqrt{2}$ and $-\sqrt{2}$ with multiplicity 2 , 1,1 respectively. However, since only 0 belongs to the interior of the circumference of radius 1 centered at the origin, we get that

$$
\int_{|z|=1} \frac{1}{z^{2}\left(z^{2}-4\right) e^{z}} d z=2 \pi i \operatorname{res}_{0}(f)=2 \pi i \lim _{z \rightarrow 0}\left(z^{2} f(z)\right)^{\prime}=2 \pi i \lim _{z \rightarrow 0}\left(\frac{1}{\left(z^{2}-4\right) e^{z}}\right)^{\prime}=\frac{\pi i}{2} .
$$

(c)

$$
\int_{|z|=1 / 2} \frac{1}{z \sin (1 / z)} d z .
$$

SOL: By parametrizing the contour as $t \mapsto e^{i t} / 2$ we get that

$$
\int_{|z|=1 / 2} \frac{1}{z \sin (1 / z)} d z=\int_{0}^{2 \pi} \frac{i e^{i t} / 2}{e^{i t} / 2 \sin \left(2 e^{-i t}\right)} d z=\int_{|w|=2} \frac{1}{w \sin (w)} d w
$$

where we recognised $t \mapsto 2 e^{-i t}$ as the circle of radius 2 oriented in the clockwise direction (hence the change of sign). The only pole contained in $|w| \leq 2$ is $z=0$, and it is of order 2 (arguing like in Exercise 7.1). We get

$$
\int_{|w|=2} \frac{1}{w \sin (w)} d w=2 \pi i \operatorname{res}_{0}\left(\frac{1}{w \sin (w)}\right)=2 \pi i \lim _{w \rightarrow 0}\left(\frac{w^{2}}{w \sin (w)}\right)^{\prime}=0
$$

(d)

$$
\int_{\gamma} \frac{1}{(z-i)(z+2)(z-4)} d z,
$$

for any simple closed curve γ that does not intersect the points $\{i,-2,4\}$.
SOL: The poles of $f(z)=\frac{1}{(z-i)(z+2)(z-4)}$ are all of order 1 , and equal to $i,-2$, and 4 . The associated residues are

$$
\begin{aligned}
\operatorname{res}_{i} f & =\frac{1}{(2+i)(i-4)}, \\
\operatorname{res}_{-2} f & =\frac{1}{6(2+i)}, \\
\operatorname{res}_{4} f & =\frac{1}{6(4-i)} .
\end{aligned}
$$

The value of the integral depends on weather or not the poles are inside the curve γ :

$$
\int_{\gamma} \frac{1}{(z-i)(z+2)(z-4)} d z=2 \pi i\left(\frac{\mathbf{1}_{\gamma}(i)}{(2+i)(i-4)}+\frac{\mathbf{1}_{\gamma}(-2)}{6(2+i)}+\frac{\mathbf{1}_{\gamma}(4)}{6(4-i)}\right),
$$

where here $\mathbf{1}_{\gamma}: \mathbb{C} \rightarrow\{0,1\}$ is the indicator function defined as

$$
\mathbf{1}_{\gamma}(z)= \begin{cases}1, & \text { if } z \text { belongs to the open interior of } \gamma \\ 0, & \text { otherwise }\end{cases}
$$

7.3. Poles at infinity Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. We say that f has a pole at infinity of order $N \in \mathbb{N}$ if the function $g(z):=f(1 / z)$ has a pole of order N at the origin in the usual sense. Prove that if $f: \mathbb{C} \rightarrow \mathbb{C}$ has a pole of order $N \in \mathbb{N}$ at infinity, then it has to be a polynomial of degree $N \in \mathbb{N}$.

SOL: Since f is holomorphic, the expansion

$$
f(z)=\sum_{k=0}^{+\infty} a_{k} z^{k}
$$

converges in any ball centered in 0 . If f has a pole at infinity of order N, by definition for $z \neq 0$

$$
g(z)=f(1 / z)=\sum_{k=0}^{+\infty} a_{k} z^{-k}
$$

has a pole of order N at zero, which means

$$
z^{N} g(z)=\sum_{k=0}^{+\infty} a_{k} z^{N-k}
$$

is holomorphic in a neighbourhood of 0 . This implies that $a_{k}=0$ for every $k>N$ and $a_{N} \neq 0$, proving that

$$
f(z)=\sum_{k=0}^{N} a_{k} z^{k},
$$

that is, f is a polynomial of degree N as claimed.
7.4. The Gamma function Let $Z_{-}:=\{0,-1,-2, \ldots\}$ the set of all non-positive integers, and define for all $\tau \in \mathbb{R}$ the set $U_{\tau}:=\left\{z \in \mathbb{C}: \Re(z)>\tau, z \notin Z_{-}\right\}$, and $U:=\mathbb{C} \backslash Z_{-}$.
(a) Show that the function defined by the complex improper Riemann integral

$$
\Gamma(z)=\int_{0}^{+\infty} e^{-t} t^{z-1} d t
$$

is well defined for all $z \in U_{1}$. (Here $\left.t^{z-1}=\exp ((z-1) \log (t))\right)$.
SOL: First of all, fix $z \in U_{1}$. Then, $\Re(z-1)>0$ by definition of U_{1}, and therefore there exists $a>0$ large enough (depending on $\Re(z)$) such that $\Re(z-1) \log (t)<t / 2$ for all $t>a$ (this follows from the elementary observation $\lim _{s \rightarrow+\infty} \log (s) / s=0$). Now for every $n>a$ one has that

$$
\begin{aligned}
\left|\int_{a}^{n} e^{-t} t^{z-1} d t\right| & =\left|\int_{a}^{n} e^{-t} e^{(\Re(z-1)+i \Im(z-1)) \log (t)} d t\right| \\
& =\left|\int_{a}^{n} e^{-t} e^{i \Im(z-1) \log (t)} e^{\Re(z-1) \log (t)} d t\right| \\
& \leq \int_{a}^{n} e^{-t}\left|e^{i \Im(z-1) \log (t)}\right|\left|e^{\Re(z-1) \log (t)}\right| d t=\int_{a}^{n} e^{-t} e^{\Re(z-1) \log (t)} d t \\
& \leq \int_{a}^{n} e^{-t} e^{t / 2} d t=\left[-2 e^{-t / 2}\right]_{t=a}^{t=n}=-2 e^{-a / 2}+2 e^{-n / 2} .
\end{aligned}
$$

On the other side, notice that on the interval $[0, a]$ the function $t \mapsto e^{-t+\Re(z-1) \ln (t)}$ is continuous, and therefore the integral $\int_{0}^{a}\left|e^{-t} t^{z-1}\right| d t=: \alpha$ is well defined. Hence, we conclude that the improper integral defining Γ converges absolutely:

$$
\lim _{n \rightarrow+\infty} \int_{0}^{n}\left|e^{-t} t^{z-1}\right| d t=\int_{0}^{a}\left|e^{-t} t^{z-1}\right| d t+\lim _{n \rightarrow+\infty} \int_{a}^{n}\left|e^{-t} t^{z-1}\right| d t \leq \alpha-2 e^{-a / 2}<+\infty
$$

proving that $\Gamma(z)$ is well defined for all $z \in U_{1}$.
(b) Prove that Γ is holomorphic in U_{1}.

Hint: First show that the functions of the sequence $\left(\Gamma_{n}\right)_{n \in \mathbb{N}}$ given by truncating the integral at height $n\left(\Gamma_{n}(z)=\int_{0}^{n} e^{-t} t^{z-1} d t\right)$ are holomorphic. Then, show that $\Gamma_{n} \rightarrow \Gamma$ uniformly in all compact subsets of U_{1}.

SOL: Define the sequence

$$
\left(\Gamma_{n}(z)\right)_{n \in \mathbb{N}}=\int_{0}^{n} e^{-t} t^{z-1} d t
$$

We first prove that $z \mapsto \Gamma_{n}(z)$ is continuous: let $\varepsilon>0$ and fix $w \in U_{1}$ and $n \in \mathbb{N}$. Since $z \mapsto t^{z-1}$ is continuous in U_{1}, there exists $\delta>0$ such that for every $v \in \mathbb{C}$ such that $|w-v|<\delta$ one has that $\left|t^{w-1}-t^{v-1}\right|<\varepsilon /\left(1-e^{-n}\right)$ and $v \in U_{1}$. In this case we can perform the following estimate:

$$
\left|\Gamma_{n}(w)-\Gamma_{n}(v)\right| \leq \int_{0}^{n} e^{-t}\left|t^{w-1}-t^{v-1}\right| d t<\left(1-e^{-n}\right) \varepsilon /\left(1-e^{-n}\right)=\varepsilon
$$

proving the continuity of Γ_{n} in $w \in U_{1}$ arbitrary, and therefore in all U_{1}. By Morera's Theorem, we prove Γ_{n} holomorphic in U_{1} by checking that $\int_{T} \Gamma_{n}(z) d z=0$ for all triangle $T \subset U_{1}$. Now, observe that for such a given triangle

$$
\int_{T} \Gamma_{n}(z) d z=\int_{T} \int_{0}^{n} e^{-t} t^{z-1} d t d z=\int_{0}^{n} \int_{T} e^{-t} t^{z-1} d z d t=\int_{0}^{n} 0 d z=0
$$

since $z \mapsto t^{z-1}$ is holomorphic for all $t>0$, and we can interchange the integration because both T and $[0, n]$ are compact, and $(t, z) \mapsto e^{-t} t^{z-1}$ is continuous and hence uniformly bounded in $[0, n] \times T$. This shows that $\left(\Gamma_{n}\right)_{n \in \mathbb{N}}$ define a sequence of holomorphic functions on U_{1}. By taking advantage of Theorem 5.2 of last lecture, to show that Γ is holomorphic in U_{1} is suffices to prove that $\Gamma_{n} \rightarrow \Gamma$ uniformly on every compact subset of U_{1}. Let $K \subset U_{1}$ be compact, and let $b=\max \{\Re(z-1): z \in K\}>0$. Let $N=N(b)>0$ big enough so that $t / 2 \geq b \log (t)$ for all $t>N$. Then, for all $z \in K$ and $n \geq N$ one has that

$$
\left|\Gamma(z)-\Gamma_{n}(z)\right| \leq \int_{n}^{+\infty} e^{-t} e^{\Re(z-1) \log (t)} d t \leq \int_{n}^{+\infty} e^{-t} e^{b \log (t)} d t \leq 2 e^{-2 n}
$$

which converges to zero uniformly in K.
(c) Show that $\Gamma(z+1)=z \Gamma(z)$ for all $z \in U_{1}$.

SOL: This follows by integration by parts:

$$
\Gamma(z+1)=\int_{0}^{+\infty} e^{-t} t^{z} d t=\left[-e^{-t} t^{z}\right]_{0}^{+\infty}+\int_{0}^{+\infty} e^{-t} z t^{z-1} d t=z \Gamma(z)
$$

(d) Deduce that Γ allows a unique holomorphic extension to U_{0}.

SOL: Define the function $\tilde{\Gamma}$ on U_{0} by setting

$$
\tilde{\Gamma}(z)=\frac{\Gamma(z+1)}{z}, \quad z \in U_{0} .
$$

Since $z \in U_{0}$ implies $z+1 \in U_{1}$ and $z \neq 0$, we deduce that $\tilde{\Gamma}$ is a well defined holomorphic function. On the other side, by the previous point $\tilde{\Gamma}$ coincides with Γ on U_{1}, showing that it is the unique analytic continuation of Γ from U_{1} to U_{0}.
(e) Deduce that Γ allows a unique holomorphic extension to U.

SOL: We construct the extension on U inductively on $m \in \mathbb{N}_{0}$ over $U_{-m / 2}$ preserving the property $\Gamma(z+1)=z \Gamma(z)$. The case $m=0$ has been proved in the previous point. Supposing now Γ extended in $U_{-m / 2}$, then

$$
\Gamma(z)=\frac{\Gamma(z+1)}{z}, \quad z \in U_{-(m+1) / 2}
$$

defines again an analytic extension, agreeing with the previous one on the set $U_{-m / 2}$. The property $\Gamma(z+1)=z \Gamma(z)$ is ensured by the very definition, an the uniqueness by the properties of analytic functions.

