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Exercises with a ⋆ are eligible for bonus points.

7.1. Calculus of residues Determine the order of the poles of the following functions
and compute their residue at the indicated points:

res2i

( 1
z2 + 4

)
, res0

(sin(z)
z2

)
, res0

(cos(z)
z2

)
, res1

( 1
z5 − 1

)
.

SOL: Since (1/(z2 + 4))−1 = (z2 + 4) = (z − 2i)(z + 2i) has a zero of order 1 in 2i, we
get that 1/(z2 + 4) has a pole of order 1 at the same point. The residue is given by

res2i
1

z2 + 4 = lim
z→2i

(z − 2i) 1
z2 + 4 = 1

4i
.

For the second function, taking advantage of the Taylor expansion of sin(z) at 0 we
have that

sin(z)
z2 = z−2

+∞∑
k=0

(−1)kz2k+1

(2k + 1)! = z−1 +
+∞∑
k=1

(−1)kz2k−1

(2k + 1)! ,

showing at the same time that the pole at zero is of order 1 and the residue is

res0
sin(z)

z2 = 1.

We argue similarly for the third function:

cos(z)
z2 = z−2

+∞∑
k=0

(−1)kz2k

(2k)! = z−2 +
+∞∑
k=1

(−1)kz2k−2

(2k)! ,

and hence the pole is of order 2, and

res0
cos(z)

z2 = 0.

Finally, (1/(z5 − 1))−1 = z5 − 1 has a zero of order 1 in 1, and therefore the pole of
1/(z5 − 1) is also of order 1 by definition. The residue is

res1
1

z5 − 1 = lim
z→1

(z − 1)
z5 − 1 = lim

z→1

1
5z4 = 1

5 ,

where we took advantage of Bernoulli-l’Hôpital’s rule to compute the limit.

7.2. Complex integrals Compute the following complex integrals taking advantage
of the Residue Theorem.
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(a) ∫
|z|=2

ez

z2(z − 1) dz.

SOL: The poles of f(z) = ez/(z2(z − 1)) are at 0 and 1, with multiplicity 2 and 1
respectively. We compute

res0(f) = lim
z→0

(z2f(z))′ = lim
z→0

(
ez

(z − 1)

)′
= −2,

and

res1(f) = lim
z→1

(z − 1)f(z) = e.

By the Residue Theorem, since 0 and 1 are in the interior of the disc of radius 2
centered at the origin, we can compute∫

|z|=2

ez

z2(z − 1) dz = 2πi(e − 2).

(b) ∫
|z|=1

1
z2(z2 − 4)ez

dz.

SOL: The poles of f(z) = 1/(z2(z2 − 4)) are at 0,
√

2 and −
√

2 with multiplicity 2,
1, 1 respectively. However, since only 0 belongs to the interior of the circumference of
radius 1 centered at the origin, we get that∫

|z|=1

1
z2(z2 − 4)ez

dz = 2πi res0(f) = 2πi lim
z→0

(z2f(z))′ = 2πi lim
z→0

( 1
(z2 − 4)ez

)′
= πi

2 .

(c) ∫
|z|=1/2

1
z sin(1/z) dz.

SOL: By parametrizing the contour as t 7→ eit/2 we get that∫
|z|=1/2

1
z sin(1/z) dz =

∫ 2π

0

ieit/2
eit/2 sin(2e−it) dz =

∫
|w|=2

1
w sin(w) dw

where we recognised t 7→ 2e−it as the circle of radius 2 oriented in the clockwise
direction (hence the change of sign). The only pole contained in |w| ≤ 2 is z = 0, and
it is of order 2 (arguing like in Exercise 7.1). We get∫

|w|=2

1
w sin(w) dw = 2πi res0

( 1
w sin(w)

)
= 2πi lim

w→0

(
w2

w sin(w)

)′
= 0.
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(d) ∫
γ

1
(z − i)(z + 2)(z − 4) dz,

for any simple closed curve γ that does not intersect the points {i, −2, 4}.

SOL: The poles of f(z) = 1
(z−i)(z+2)(z−4) are all of order 1, and equal to i, −2, and 4.

The associated residues are

resi f = 1
(2 + i)(i − 4) ,

res−2 f = 1
6(2 + i) ,

res4 f = 1
6(4 − i) .

The value of the integral depends on weather or not the poles are inside the curve γ:
∫

γ

1
(z − i)(z + 2)(z − 4) dz = 2πi

( 1γ(i)
(2 + i)(i − 4) + 1γ(−2)

6(2 + i) + 1γ(4)
6(4 − i)

)
,

where here 1γ : C → {0, 1} is the indicator function defined as

1γ(z) =

1, if z belongs to the open interior of γ,

0, otherwise.

7.3. Poles at infinity Let f : C → C be holomorphic. We say that f has a pole
at infinity of order N ∈ N if the function g(z) := f(1/z) has a pole of order N at
the origin in the usual sense. Prove that if f : C → C has a pole of order N ∈ N at
infinity, then it has to be a polynomial of degree N ∈ N.

SOL: Since f is holomorphic, the expansion

f(z) =
+∞∑
k=0

akzk,

converges in any ball centered in 0. If f has a pole at infinity of order N , by definition
for z ̸= 0

g(z) = f(1/z) =
+∞∑
k=0

akz−k
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has a pole of order N at zero, which means

zNg(z) =
+∞∑
k=0

akzN−k

is holomorphic in a neighbourhood of 0. This implies that ak = 0 for every k > N
and aN ̸= 0, proving that

f(z) =
N∑

k=0
akzk,

that is, f is a polynomial of degree N as claimed.

7.4. The Gamma function Let Z− := {0, −1, −2, . . . } the set of all non-positive
integers, and define for all τ ∈ R the set Uτ := {z ∈ C : ℜ(z) > τ, z ̸∈ Z−}, and
U := C \ Z−.

(a) Show that the function defined by the complex improper Riemann integral

Γ(z) =
∫ +∞

0
e−ttz−1 dt

is well defined for all z ∈ U1. (Here tz−1 = exp((z − 1) log(t))).

SOL: First of all, fix z ∈ U1. Then, ℜ(z − 1) > 0 by definition of U1, and therefore
there exists a > 0 large enough (depending on ℜ(z)) such that ℜ(z − 1) log(t) < t/2
for all t > a (this follows from the elementary observation lims→+∞ log(s)/s = 0).
Now for every n > a one has that∣∣∣∣∫ n

a
e−ttz−1 dt

∣∣∣∣ =
∣∣∣∣∫ n

a
e−te(ℜ(z−1)+iℑ(z−1)) log(t) dt

∣∣∣∣
=

∣∣∣∣∫ n

a
e−teiℑ(z−1) log(t)eℜ(z−1) log(t) dt

∣∣∣∣
≤

∫ n

a
e−t|eiℑ(z−1) log(t)||eℜ(z−1) log(t)| dt =

∫ n

a
e−teℜ(z−1) log(t) dt

≤
∫ n

a
e−tet/2 dt = [−2e−t/2]t=n

t=a = −2e−a/2 + 2e−n/2.

On the other side, notice that on the interval [0, a] the function t 7→ e−t+ℜ(z−1) ln(t) is
continuous, and therefore the integral

∫ a
0 |e−ttz−1| dt =: α is well defined. Hence, we

conclude that the improper integral defining Γ converges absolutely:

lim
n→+∞

∫ n

0
|e−ttz−1| dt =

∫ a

0
|e−ttz−1| dt + lim

n→+∞

∫ n

a
|e−ttz−1| dt ≤ α − 2e−a/2 < +∞

proving that Γ(z) is well defined for all z ∈ U1.
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(b) Prove that Γ is holomorphic in U1.

Hint: First show that the functions of the sequence (Γn)n∈N given by truncating the
integral at height n (Γn(z) =

∫ n
0 e−ttz−1 dt) are holomorphic. Then, show that Γn → Γ

uniformly in all compact subsets of U1.

SOL: Define the sequence

(Γn(z))n∈N =
∫ n

0
e−ttz−1 dt.

We first prove that z 7→ Γn(z) is continuous: let ε > 0 and fix w ∈ U1 and n ∈ N.
Since z 7→ tz−1 is continuous in U1, there exists δ > 0 such that for every v ∈ C such
that |w − v| < δ one has that |tw−1 − tv−1| < ε/(1 − e−n) and v ∈ U1. In this case we
can perform the following estimate:

|Γn(w) − Γn(v)| ≤
∫ n

0
e−t|tw−1 − tv−1| dt < (1 − e−n)ε/(1 − e−n) = ε,

proving the continuity of Γn in w ∈ U1 arbitrary, and therefore in all U1. By Morera’s
Theorem, we prove Γn holomorphic in U1 by checking that

∫
T Γn(z) dz = 0 for all

triangle T ⊂ U1. Now, observe that for such a given triangle∫
T

Γn(z)dz =
∫

T

∫ n

0
e−ttz−1 dt dz =

∫ n

0

∫
T

e−ttz−1 dz dt =
∫ n

0
0 dz = 0,

since z 7→ tz−1 is holomorphic for all t > 0, and we can interchange the integration
because both T and [0, n] are compact, and (t, z) 7→ e−ttz−1 is continuous and hence
uniformly bounded in [0, n] × T . This shows that (Γn)n∈N define a sequence of
holomorphic functions on U1. By taking advantage of Theorem 5.2 of last lecture, to
show that Γ is holomorphic in U1 is suffices to prove that Γn → Γ uniformly on every
compact subset of U1. Let K ⊂ U1 be compact, and let b = max{ℜ(z−1) : z ∈ K} > 0.
Let N = N(b) > 0 big enough so that t/2 ≥ b log(t) for all t > N . Then, for all
z ∈ K and n ≥ N one has that

|Γ(z) − Γn(z)| ≤
∫ +∞

n
e−teℜ(z−1) log(t) dt ≤

∫ +∞

n
e−teb log(t) dt ≤ 2e−2n,

which converges to zero uniformly in K.

(c) Show that Γ(z + 1) = zΓ(z) for all z ∈ U1.

SOL: This follows by integration by parts:

Γ(z + 1) =
∫ +∞

0
e−ttz dt = [−e−ttz]+∞

0 +
∫ +∞

0
e−tztz−1 dt = zΓ(z).
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(d) Deduce that Γ allows a unique holomorphic extension to U0.

SOL: Define the function Γ̃ on U0 by setting

Γ̃(z) = Γ(z + 1)
z

, z ∈ U0.

Since z ∈ U0 implies z + 1 ∈ U1 and z ̸= 0, we deduce that Γ̃ is a well defined
holomorphic function. On the other side, by the previous point Γ̃ coincides with Γ on
U1, showing that it is the unique analytic continuation of Γ from U1 to U0.

(e) Deduce that Γ allows a unique holomorphic extension to U .

SOL: We construct the extension on U inductively on m ∈ N0 over U−m/2 preserving
the property Γ(z + 1) = zΓ(z). The case m = 0 has been proved in the previous point.
Supposing now Γ extended in U−m/2, then

Γ(z) = Γ(z + 1)
z

, z ∈ U−(m+1)/2.

defines again an analytic extension, agreeing with the previous one on the set U−m/2.
The property Γ(z + 1) = zΓ(z) is ensured by the very definition, an the uniqueness
by the properties of analytic functions.
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