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Exercises with a % are eligible for bonus points.

8.1. Meromorphic functions For z € C such that sin(z) # 0 define the map

cotan(z) = cos(2)

sin(z)
(a) Show that cotan is meromorphic in C, determine its poles and their residues.

SOL: Notice that sin(z) = 0 if and only if z = k7 for some k € Z, and therefore
cotan is holomorphic in the open domain C\ {kn : k € Z}. Since {kw : k € Z} has
no accumulation points in C, in order to prove that cotan is meromorphic we are left
to show that its singularities are in fact poles. By definition z = k7 is a pole of cotan
if it is a zero of 1/ cotan = tan, which is the case since cos(kn) = (—1)*. To compute
the residues we notice that all poles have order one since the zeros of tan have order
one:

1
t "= =1#0.
an(z)" |,= c052(2) |pon #
Therefore,
—k
resg, cotan = lim (z — kw)C?S(Z) = (=D lim u = (-1)* =1,
Pany sin(z) e—kr sin(2)
since
: B 2
lim sin(2) — lim cos(km)(z — km) 4+ O(|z — kn|?) (<1,
z—km 7 — ki z—km (Z — kﬂ')

by expanding sin(z) around k7 at the first order.
(b) Let w € C\ Z and define

7 cotan(mz)

Show that f is meromorphic in C, determine its poles and their residues.

SOL: Since z +— cotan(rz) and z — 1/(z + w)? are meromorphic, f is also meromor-
phic by being the multiplication of the two. Thanks to the previous point, the set of
poles of f are Z U {—w}. The residues at k € Z are given by

resy, f = 1 . m(z — k) cos(mz)
(k 4+ w)? 2=k sin(7z)
D"y m(z = k) 1

(k + w)? y meos(mz)(z — k) + O(lz — k|2)  (k+w)?
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To compute the order of —w observe that cotan(wz) is equal to zero if and only if
z=k+1/2, k € Z. Hence, if —w = k + 1/2, then the pole has order 1 and

res— f = lim (2 +w)flz) = I, sm@ff;((: & w)
.. w(=msin(—mw)(z + w) + O]z + w|?)) . i
= lim, sin(—mw)(z + w) - -~ sin(rw)?

If —w # k + 1/2, then the pole has order 2, and

res_,, f = lim ((2 + w)Zf(z))/ = lim (7 cotan(7z)) = —

z——w z——w sin2 (7rw)2 '

(c) Compute for every integer n > 1 such that |w| < n the line integral

| fa.

where ~, is the circle or radius n + 1/2 centered at the origin and positively oriented.

SOL: Observe that ~, does not intersect with any of the poles of f and contains the
pole —w. We can therefore apply the Residue Theorem obtaining

/n fdz= 2m<res_wf+ Z resy f) = 27TZ<

k=—n

2 n

+§_: w+k>

(d) Deduce that

lim zn: 1 m
n—too (w4 k)2 sm( w)?

SOL: From the previous point, since

k 2
1 1
dz + T

k;k (w+ k)2 = omi " / sin(7w)?’

it suffices to prove that the integral on -, vanishes as n — +o00. Observe that

1 + 62'L'7rz
eQiﬂ'z -1

e’Lﬂ'Z + 67171'2

e’LTI'Z J— €—Z7TZ

1+ ’62i7rz| B 1_}_6727r3(z)
— ||627riz| _ 1| - |e—27r%(z) _ ]_|

|cotan(mz)| = |i =

taking advantage of the reverse triangle inequality |w — u| > ||w| — |u||. Hence, for
every € > 0 the function cotan(mz) is uniformly bounded in the half plane {J(z) > ¢}
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by C(e) = 2/(1 — e *™) > 0. The same holds true in the half plane {J(z) < —¢}
since cotan(—mz) = —cotan(mz). Let now n € Z and consider a point in a 2e-
neighbourhood of nw +1/2, i.e. u=n+1/2+ 7, for 7 € C, |7| < 2¢. Then, taking
advantage of the classical trigonometric identities we can compute

cos(u) _ cos(m(n + 1/2)) cos(nt) — sin(w(n + 1/2)) sin(77)

cotan(mu) = sin(u)  sin(w(n + 1/2)) cos(n7) + cos(m(n + 1/2)) sin(77)
__sin ) — tan(rr
~ cos(nT) fan(rr),

whose norm is controlled uniformly in n by some constant C’ = C’(¢) > 0 provided
e < 1/2. Hence, fixing ¢ < 1/2 and covering every circle v, with two half planes and
two balls centered in the intersection of the real axis we can estimate

mmax{C,C"}
dx| < dz < length(~,
! x’—/%‘f’ @ < length(n) =9 7 )2

_ 2r%(n+1/2) max{C,C"}
(12— Jw))?

— 0,

as n — 400, as wished.

8.2. Analytic continuation Let f : C — C be and entire function. Then, for every
w € C we can write

+o0
fz) = ;aﬁ(z —w)",

for suitable coefficients (a"),, in C. Let B C C be an open ball. We suppose that for
every w € B there exists m > 0 such that a;, = 0.
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(a) For every n > 0 define the set
A(n):={w € B:a; =0}.
Show that there exists m > 0 such that A(m) is uncountable.

SOL: By contradiction, suppose that for every n the set A(n) can be written as the
image of a complex sequence (by, x)x:

A(n) = {by, : k € N}.

Then, the set A =U,, A(n) = {b,x : n,k > 0} is also at most countable because it
injects into N x N. By assumption for every w € Q there exists m such that w € A(m),
implying that

B CA,

which is a contradiction because B is uncountable. Therefore, there must be m > 0
such that A(m) is uncountable.

(b) Deduce that f is a polynomial or degree at most m.

SOL: Let m > 0 such that B C 2 is uncountable. For every w € B one has that

R n!

M) =Y ——al(z—w)" | =al =0

n=m (n - m) Zz=w

But this implies that the holomorphic function ¢ := f™ has non-isolated zeros in
B (the whole set A(m)!), which is possible only if ¢ = 0 in all B. Hence, f has to
be a polynomial of degree at most m in B, and consequently in all C by analytic
continuation.

8.3. Real integrals Compute the following real integrals taking advantage of the

Residue Theorem?!.

(a)
/” cos(4t)

dt.
sin(t)? + 1

Recall: {21,...,2x} C Q poles and f:Q\{z1,...,2x} — C holomorphic. Then if {z1,...,2n}
are inside a simple closed curve « in Q, then fv fdz=2mi Zjvzl res.; (f).
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SOL: In order to take advantage of the Residue Theorem, we need to express this
real integral as a complex one. We notice that

™ cos(4t) B T el
/0 sin(t)? + 1 = g%(/o sin(t)? + 1 dt)

4it

— —43‘%(/; o2it +6672z't -6 dt)

- (Ot
— 4R ( / , _ dt).
0 et — Ge2it 41

where in the last line we multiplied numerator and denominator by e=**. We notice
now that ¢ — e*! for t € [0, 7] is a parametrization of the unit circle, and hence the
above expression is equal to

23 1 1 22
—49%(/ .d>:—2§R<,/ d)
l2|=1 22 — 6z + 1 21z : 1 J|zl=1 22 — 62+ 1 ‘

Since the roots of 22 — 6z + 1 are z; = 3 — 2v/2 and 2z, = 3 + 2v/2, both of order 1,
2

the function m has two poles of order one in z;, z5. Notice that since only z;

belongs to the interior of the unit circle, we get

24t

™ cos(4t) 1 22
gt = —oR f/ 4 )
/0 sin(t)?2 + 1 (z l2j=1 22 — 6z + 1 :

(2t e a5 7))
=— - res _
T T save a1 g

22— 34+2V2) 17 —12v2
= —47r lim =7 .
zs3-2v2 22 —06z+1 V2

(b) L
—dz.
/—oo IE4 +1 o
SOL: To compute this integral we need to find a suitable contour. For R > 1 consider
~r to be the positively oriented boundary of half disk of radius R: D := {z € C:

X(z) > 0, |z] < R}. Dividing the curve in the segment 73 := {—R <t < R} and the
upper arc 7% := {Re® : t € [0, 7]}, we have that

00 R 1
/ dr = lim dr = lim / dz
ot +1 R—+oo )R 2t 41 Rotoo Jys, 24 + 1

1 1
— lim (/ dz—/ dz).
R—+4o00 YR 24 + 1 "/}‘{ 24 + ]-

November 23, 2023 5/7



ETH Ziirich Complex Analysis D-MATH
HS 2023 Solutions 8 Prof. Dr. O. Imamoglu

We notice that the integral over the arc goes to zero as R — 400 since

— 0, as R — +oo0.

1 TR
/a prar L Iy e
Tr

On the other hand, the poles of 1/(2* — 1) are of order one and equal to ++2 and

: V2
:I:l—\/_g. For R > 1 only two poles are contained in the the interior of v: z; = 1—\;; and

29 = % Since

1 1+

res, = — ,
AR 44/2

1 1—i

res, = — ,
2t +1 442

we conclude that

o 1 1 |

d = i / d —/ d)

/oo:c4+1 * Rirfoo< vr 2Y+1 & ve 2441 &
1

dz

= lim
R—+o0o Jyg 2
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8.4. Quotient of holomorphic functions Let f, g be two non-constant holomorphic
functions on C. Show that if |f(2)| < |g(z)| for all z € C, then there exists ¢ € C
such that f(z) = cg(2).

SOL: Let h(z) = %. Since g is not constant, it has isolated zeros, and hence h

has isolated singularities. By assumption |h(z)| < 1 for all z such that g(z) # 0.
In particular, A is bounded in a neighbourhood of the zeros of g, and therefore we
extend h to an entire function on the whole complex plane taking advantage of the
Riemann continuation Theorem (cf Exercise 5.5). By continuity, the extension h
is also uniformly bounded by 1, and therefore by Liouville’s Theorem it has to be
equal to some constant ¢ € C. This proves that for all z € C such that g(z) # 0 one
has that f(z) = cg(z). If g(z) = 0 the assumption |f(z)| < |g(z)| = 0 concludes the
argument: f(z) =0 = cg(z).
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