Exercises with $a \star$ are eligible for bonus points.
8.1. Meromorphic functions For $z \in \mathbb{C}$ such that $\sin (z) \neq 0$ define the map

$$
\operatorname{cotan}(z)=\frac{\cos (z)}{\sin (z)}
$$

(a) Show that cotan is meromorphic in \mathbb{C}, determine its poles and their residues.

SOL: Notice that $\sin (z)=0$ if and only if $z=k \pi$ for some $k \in \mathbb{Z}$, and therefore cotan is holomorphic in the open domain $\mathbb{C} \backslash\{k \pi: k \in \mathbb{Z}\}$. Since $\{k \pi: k \in \mathbb{Z}\}$ has no accumulation points in \mathbb{C}, in order to prove that cotan is meromorphic we are left to show that its singularities are in fact poles. By definition $z=k \pi$ is a pole of cotan if it is a zero of $1 / \operatorname{cotan}=\tan$, which is the case since $\cos (k \pi)=(-1)^{k}$. To compute the residues we notice that all poles have order one since the zeros of tan have order one:

$$
\left.\tan (z)^{\prime}\right|_{z=k \pi}=\left.\frac{1}{\cos ^{2}(z)}\right|_{z=k \pi}=1 \neq 0 .
$$

Therefore,

$$
\operatorname{res}_{k \pi} \operatorname{cotan}=\lim _{z \rightarrow k \pi}(z-k \pi) \frac{\cos (z)}{\sin (z)}=(-1)^{k} \lim _{z \rightarrow k \pi} \frac{(z-k \pi)}{\sin (z)}=(-1)^{2 k}=1,
$$

since

$$
\lim _{z \rightarrow k \pi} \frac{\sin (z)}{z-k \pi}=\lim _{z \rightarrow k \pi} \frac{\cos (k \pi)(z-k \pi)+O\left(|z-k \pi|^{2}\right)}{(z-k \pi)}=(-1)^{k}
$$

by expanding $\sin (z)$ around $k \pi$ at the first order.
(b) Let $w \in \mathbb{C} \backslash \mathbb{Z}$ and define

$$
f(z)=\frac{\pi \operatorname{cotan}(\pi z)}{(z+w)^{2}}
$$

Show that f is meromorphic in \mathbb{C}, determine its poles and their residues.
SOL: Since $z \mapsto \operatorname{cotan}(\pi z)$ and $z \mapsto 1 /(z+w)^{2}$ are meromorphic, f is also meromorphic by being the multiplication of the two. Thanks to the previous point, the set of poles of f are $\mathbb{Z} \cup\{-w\}$. The residues at $k \in \mathbb{Z}$ are given by

$$
\begin{aligned}
\operatorname{res}_{k} f & =\frac{1}{(k+w)^{2}} \lim _{z \rightarrow k} \frac{\pi(z-k) \cos (\pi z)}{\sin (\pi z)} \\
& =\frac{(-1)^{k}}{(k+w)^{2}} \lim _{z \rightarrow k} \frac{\pi(z-k)}{\pi \cos (\pi z)(z-k)+O\left(|z-k|^{2}\right)}=\frac{1}{(k+w)^{2}} .
\end{aligned}
$$

To compute the order of $-w$ observe that $\operatorname{cotan}(\pi z)$ is equal to zero if and only if $z=k+1 / 2, k \in \mathbb{Z}$. Hence, if $-w=k+1 / 2$, then the pole has order 1 and

$$
\begin{aligned}
\operatorname{res}_{-w} f & =\lim _{z \rightarrow-w}(z+w) f(z)=\lim _{z \rightarrow-w} \frac{\pi \cos (\pi z)}{\sin (\pi z)(z+w)} \\
& =\lim _{z \rightarrow-w} \frac{\pi\left(-\pi \sin (-\pi w)(z+w)+O\left(|z+w|^{2}\right)\right)}{\sin (-\pi w)(z+w)}=-\pi^{2}=-\frac{\pi^{2}}{\sin (\pi w)^{2}} .
\end{aligned}
$$

If $-w \neq k+1 / 2$, then the pole has order 2 , and

$$
\operatorname{res}_{-w} f=\lim _{z \rightarrow-w}\left((z+w)^{2} f(z)\right)^{\prime}=\lim _{z \rightarrow-w}(\pi \operatorname{cotan}(\pi z))^{\prime}=-\frac{\pi^{2}}{\sin ^{2}(\pi w)^{2}}
$$

(c) Compute for every integer $n \geq 1$ such that $|w|<n$ the line integral

$$
\int_{\gamma_{n}} f d z
$$

where γ_{n} is the circle or radius $n+1 / 2$ centered at the origin and positively oriented.
SOL: Observe that γ_{n} does not intersect with any of the poles of f and contains the pole $-w$. We can therefore apply the Residue Theorem obtaining

$$
\int_{\gamma_{n}} f d z=2 \pi i\left(\operatorname{res}_{-w} f+\sum_{k=-n}^{n} \operatorname{res}_{k} f\right)=2 \pi i\left(-\frac{\pi^{2}}{\sin ^{2}(\pi w)}+\sum_{k=-n}^{n} \frac{1}{(w+k)^{2}}\right) .
$$

(d) Deduce that

$$
\lim _{n \rightarrow+\infty} \sum_{k=-n}^{n} \frac{1}{(w+k)^{2}}=\frac{\pi^{2}}{\sin (\pi w)^{2}}
$$

SOL: From the previous point, since

$$
\sum_{k=-k}^{k} \frac{1}{(w+k)^{2}}=\frac{1}{2 \pi i} \int_{\gamma_{n}} f d z+\frac{\pi^{2}}{\sin (\pi w)^{2}}
$$

it suffices to prove that the integral on γ_{n} vanishes as $n \rightarrow+\infty$. Observe that

$$
|\operatorname{cotan}(\pi z)|=\left|i \frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}\right|=\left|\frac{1+e^{2 i \pi z}}{e^{2 i \pi z}-1}\right| \leq \frac{1+\left|e^{2 i \pi z}\right|}{\left|\left|e^{2 \pi i z}\right|-1\right|}=\frac{1+e^{-2 \pi \Im(z)}}{\left|e^{-2 \pi \Im(z)}-1\right|} .
$$

taking advantage of the reverse triangle inequality $|w-u| \geq||w|-|u||$. Hence, for every $\varepsilon>0$ the function $\operatorname{cotan}(\pi z)$ is uniformly bounded in the half plane $\{\Im(z)>\varepsilon\}$
by $C(\varepsilon)=2 /\left(1-e^{-2 \pi \varepsilon}\right)>0$. The same holds true in the half plane $\{\Im(z)<-\varepsilon\}$ since $\operatorname{cotan}(-\pi z)=-\operatorname{cotan}(\pi z)$. Let now $n \in \mathbb{Z}$ and consider a point in a 2ε neighbourhood of $n \pi+1 / 2$, i.e. $u=n+1 / 2+\tau$, for $\tau \in \mathbb{C},|\tau|<2 \varepsilon$. Then, taking advantage of the classical trigonometric identities we can compute

$$
\begin{aligned}
\operatorname{cotan}(\pi u) & =\frac{\cos (u)}{\sin (u)}=\frac{\cos (\pi(n+1 / 2)) \cos (\pi \tau)-\sin (\pi(n+1 / 2)) \sin (\pi \tau)}{\sin (\pi(n+1 / 2)) \cos (\pi \tau)+\cos (\pi(n+1 / 2)) \sin (\pi \tau)} \\
& =-\frac{\sin (\pi \tau)}{\cos (\pi \tau)}=-\tan (\pi \tau)
\end{aligned}
$$

whose norm is controlled uniformly in n by some constant $C^{\prime}=C^{\prime}(\varepsilon)>0$ provided $\varepsilon<1 / 2$. Hence, fixing $\varepsilon<1 / 2$ and covering every circle γ_{n} with two half planes and two balls centered in the intersection of the real axis we can estimate

$$
\begin{aligned}
\left|\int_{\gamma_{n}} f d x\right| & \leq \int_{\gamma_{n}}|f| d z \leq \operatorname{length}\left(\gamma_{n}\right) \frac{\pi \max \left\{C, C^{\prime}\right\}}{(n+1 / 2-|w|)^{2}} \\
& =\frac{2 \pi^{2}(n+1 / 2) \max \left\{C, C^{\prime}\right\}}{(n+1 / 2-|w|)^{2}} \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow+\infty$, as wished.

8.2. Analytic continuation Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be and entire function. Then, for every $w \in \mathbb{C}$ we can write

$$
f(z)=\sum_{n=0}^{+\infty} a_{n}^{w}(z-w)^{n}
$$

for suitable coefficients $\left(a_{n}^{w}\right)_{n}$ in \mathbb{C}. Let $B \subset \mathbb{C}$ be an open ball. We suppose that for every $w \in B$ there exists $m \geq 0$ such that $a_{m}^{w}=0$.
(a) For every $n \geq 0$ define the set

$$
A(n):=\left\{w \in B: a_{n}^{w}=0\right\} .
$$

Show that there exists $m \geq 0$ such that $A(m)$ is uncountable.
SOL: By contradiction, suppose that for every n the set $A(n)$ can be written as the image of a complex sequence $\left(b_{n, k}\right)_{k}$:

$$
A(n)=\left\{b_{n, k}: k \in \mathbb{N}\right\} .
$$

Then, the set $A=\cup_{n} A(n)=\left\{b_{n, k}: n, k \geq 0\right\}$ is also at most countable because it injects into $\mathbb{N} \times \mathbb{N}$. By assumption for every $w \in \Omega$ there exists m such that $w \in A(m)$, implying that

$$
B \subset A,
$$

which is a contradiction because B is uncountable. Therefore, there must be $m \geq 0$ such that $A(m)$ is uncountable.
(b) Deduce that f is a polynomial or degree at most m.

SOL: Let $m \geq 0$ such that $B \subset \Omega$ is uncountable. For every $w \in B$ one has that

$$
f^{(m)}(w)=\left.\sum_{n=m}^{+\infty} \frac{n!}{(n-m)!} a_{n}^{w}(z-w)^{n-m}\right|_{z=w}=a_{n}^{w}=0 .
$$

But this implies that the holomorphic function $g:=f^{(m)}$ has non-isolated zeros in B (the whole set $A(m)!$), which is possible only if $g \equiv 0$ in all B. Hence, f has to be a polynomial of degree at most m in B, and consequently in all \mathbb{C} by analytic continuation.
8.3. Real integrals Compute the following real integrals taking advantage of the Residue Theorem ${ }^{1}$.
(a)

$$
\int_{0}^{\pi} \frac{\cos (4 t)}{\sin (t)^{2}+1} d t
$$

[^0]SOL: In order to take advantage of the Residue Theorem, we need to express this real integral as a complex one. We notice that

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\cos (4 t)}{\sin (t)^{2}+1} d t & =\Re\left(\int_{0}^{\pi} \frac{e^{4 i t}}{\sin (t)^{2}+1} d t\right) \\
& =\Re\left(\int_{0}^{\pi} \frac{e^{4 i t}}{\left(\left(e^{i t}-e^{-i t}\right) /(2 i)\right)^{2}+1} d t\right) \\
& =-4 \Re\left(\int_{0}^{\pi} \frac{e^{4 i t}}{e^{2 i t}+e^{-2 i t}-6} d t\right) \\
& =-4 \Re\left(\int_{0}^{\pi} \frac{e^{6 i t}}{e^{4 i t}-6 e^{2 i t}+1} d t\right)
\end{aligned}
$$

where in the last line we multiplied numerator and denominator by $e^{2 i t}$. We notice now that $t \mapsto e^{2 i t}$ for $t \in[0, \pi]$ is a parametrization of the unit circle, and hence the above expression is equal to

$$
-4 \Re\left(\int_{|z|=1} \frac{z^{3}}{z^{2}-6 z+1} \frac{1}{2 i z} d z\right)=-2 \Re\left(\frac{1}{i} \int_{|z|=1} \frac{z^{2}}{z^{2}-6 z+1} d z\right)
$$

Since the roots of $z^{2}-6 z+1$ are $z_{1}=3-2 \sqrt{2}$ and $z_{2}=3+2 \sqrt{2}$, both of order 1 , the function $\frac{z^{2}}{z^{2}-6 z+1}$ has two poles of order one in z_{1}, z_{2}. Notice that since only z_{1} belongs to the interior of the unit circle, we get

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\cos (4 t)}{\sin (t)^{2}+1} d t & =-2 \Re\left(\frac{1}{i} \int_{|z|=1} \frac{z^{2}}{z^{2}-6 z+1} d z\right) \\
& =-2 \Re\left(2 \pi i \frac{1}{i} \operatorname{res}_{3-2 \sqrt{2}}\left(\frac{z^{2}}{z^{2}-6 z+1}\right)\right) \\
& =-4 \pi \lim _{z \rightarrow 3-2 \sqrt{2}} \frac{z^{2}(z-3+2 \sqrt{2})}{z^{2}-6 z+1}=\pi \frac{17-12 \sqrt{2}}{\sqrt{2}} .
\end{aligned}
$$

(b)

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x
$$

SOL: To compute this integral we need to find a suitable contour. For $R>1$ consider γ_{R} to be the positively oriented boundary of half disk of radius $R: D:=\{z \in \mathbb{C}$: $\Im(z)>0,|z|<R\}$. Dividing the curve in the segment $\gamma_{R}^{s}:=\{-R<t<R\}$ and the upper arc $\gamma_{R}^{a}:=\left\{R e^{i t}: t \in[0, \pi]\right\}$, we have that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x & =\lim _{R \rightarrow+\infty} \int_{-R}^{R} \frac{1}{x^{4}+1} d x=\lim _{R \rightarrow+\infty} \int_{\gamma_{R}^{s}} \frac{1}{z^{4}+1} d z \\
& =\lim _{R \rightarrow+\infty}\left(\int_{\gamma_{R}} \frac{1}{z^{4}+1} d z-\int_{\gamma_{R}^{a}} \frac{1}{z^{4}+1} d z\right) .
\end{aligned}
$$

We notice that the integral over the arc goes to zero as $R \rightarrow+\infty$ since

$$
\left|\int_{\gamma_{R}^{a}} \frac{1}{z^{4}+1} d z\right| \leq \frac{\pi R}{R^{4}-1} \rightarrow 0, \quad \text { as } R \rightarrow+\infty .
$$

On the other hand, the poles of $1 /\left(z^{4}-1\right)$ are of order one and equal to $\pm \frac{1+i}{\sqrt{2}}$ and $\pm \frac{1-i}{\sqrt{2}}$. For $R>1$ only two poles are contained in the the interior of $\gamma: z_{1}=\frac{1+i}{\sqrt{2}}$ and $z_{2}=\frac{-1+i}{\sqrt{2}}$. Since

$$
\begin{aligned}
& \operatorname{res}_{z_{1}} \frac{1}{z^{4}+1}=-\frac{1+i}{4 \sqrt{2}} \\
& \operatorname{res}_{z_{2}} \frac{1}{z^{4}+1}=-\frac{1-i}{4 \sqrt{2}}
\end{aligned}
$$

we conclude that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x & =\lim _{R \rightarrow+\infty}\left(\int_{\gamma_{R}} \frac{1}{z^{4}+1} d z-\int_{\gamma_{R}^{a}} \frac{1}{z^{4}+1} d z\right) \\
& =\lim _{R \rightarrow+\infty} \int_{\gamma_{R}} \frac{1}{z^{4}+1} d z \\
& =2 \pi i \frac{-2 i}{2 \sqrt{4}}=\frac{\pi}{\sqrt{2}} .
\end{aligned}
$$

8.4. Quotient of holomorphic functions Let f, g be two non-constant holomorphic functions on \mathbb{C}. Show that if $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$, then there exists $c \in \mathbb{C}$ such that $f(z)=c g(z)$.

SOL: Let $h(z)=\frac{f(z)}{g(z)}$. Since g is not constant, it has isolated zeros, and hence h has isolated singularities. By assumption $|h(z)| \leq 1$ for all z such that $g(z) \neq 0$. In particular, h is bounded in a neighbourhood of the zeros of g, and therefore we extend h to an entire function on the whole complex plane taking advantage of the Riemann continuation Theorem (cf Exercise 5.5). By continuity, the extension h is also uniformly bounded by 1 , and therefore by Liouville's Theorem it has to be equal to some constant $c \in \mathbb{C}$. This proves that for all $z \in \mathbb{C}$ such that $g(z) \neq 0$ one has that $f(z)=c g(z)$. If $g(z)=0$ the assumption $|f(z)| \leq|g(z)|=0$ concludes the argument: $f(z)=0=c g(z)$.

[^0]: ${ }^{1}$ Recall: $\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ poles and $f: \Omega \backslash\left\{z_{1}, \ldots, z_{N}\right\} \rightarrow \mathbb{C}$ holomorphic. Then if $\left\{z_{1}, \ldots, z_{N}\right\}$ are inside a simple closed curve γ in Ω, then $\int_{\gamma} f d z=2 \pi i \sum_{j=1}^{N} \operatorname{res}_{z_{j}}(f)$.

