Exercises with a \star are eligible for bonus points.

8.1. Meromorphic functions For $z \in \mathbb{C}$ such that $\sin(z) \neq 0$ define the map

$$\cot(z) = \frac{\cos(z)}{\sin(z)}.$$

(a) Show that cotan is meromorphic in \mathbb{C} , determine its poles and their residues.

SOL: Notice that $\sin(z) = 0$ if and only if $z = k\pi$ for some $k \in \mathbb{Z}$, and therefore cotan is holomorphic in the open domain $\mathbb{C} \setminus \{k\pi : k \in \mathbb{Z}\}$. Since $\{k\pi : k \in \mathbb{Z}\}$ has no accumulation points in \mathbb{C} , in order to prove that cotan is meromorphic we are left to show that its singularities are in fact poles. By definition $z = k\pi$ is a pole of cotan if it is a zero of $1/\operatorname{cotan} = \tan$, which is the case since $\cos(k\pi) = (-1)^k$. To compute the residues we notice that all poles have order one since the zeros of tan have order one:

$$\tan(z)'|_{z=k\pi} = \frac{1}{\cos^2(z)}\Big|_{z=k\pi} = 1 \neq 0.$$

Therefore,

$$\operatorname{res}_{k\pi} \operatorname{cotan} = \lim_{z \to k\pi} (z - k\pi) \frac{\cos(z)}{\sin(z)} = (-1)^k \lim_{z \to k\pi} \frac{(z - k\pi)}{\sin(z)} = (-1)^{2k} = 1,$$

since

$$\lim_{z \to k\pi} \frac{\sin(z)}{z - k\pi} = \lim_{z \to k\pi} \frac{\cos(k\pi)(z - k\pi) + O(|z - k\pi|^2)}{(z - k\pi)} = (-1)^k,$$

by expanding $\sin(z)$ around $k\pi$ at the first order.

(b) Let $w \in \mathbb{C} \setminus \mathbb{Z}$ and define

$$f(z) = \frac{\pi \cot(\pi z)}{(z+w)^2}$$

Show that f is meromorphic in \mathbb{C} , determine its poles and their residues.

SOL: Since $z \mapsto \operatorname{cotan}(\pi z)$ and $z \mapsto 1/(z+w)^2$ are meromorphic, f is also meromorphic by being the multiplication of the two. Thanks to the previous point, the set of poles of f are $\mathbb{Z} \cup \{-w\}$. The residues at $k \in \mathbb{Z}$ are given by

$$\operatorname{res}_{k} f = \frac{1}{(k+w)^{2}} \lim_{z \to k} \frac{\pi(z-k)\cos(\pi z)}{\sin(\pi z)}$$
$$= \frac{(-1)^{k}}{(k+w)^{2}} \lim_{z \to k} \frac{\pi(z-k)}{\pi\cos(\pi z)(z-k) + O(|z-k|^{2})} = \frac{1}{(k+w)^{2}}.$$

November 23, 2023

1/7

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Solutions 8	Prof. Dr. Ö. Imamoglu

To compute the order of -w observe that $\cot(\pi z)$ is equal to zero if and only if $z = k + 1/2, k \in \mathbb{Z}$. Hence, if -w = k + 1/2, then the pole has order 1 and

$$\operatorname{res}_{-w} f = \lim_{z \to -w} (z+w) f(z) = \lim_{z \to -w} \frac{\pi \cos(\pi z)}{\sin(\pi z)(z+w)}$$
$$= \lim_{z \to -w} \frac{\pi(-\pi \sin(-\pi w)(z+w) + O(|z+w|^2))}{\sin(-\pi w)(z+w)} = -\pi^2 = -\frac{\pi^2}{\sin(\pi w)^2}.$$

If $-w \neq k + 1/2$, then the pole has order 2, and

$$\operatorname{res}_{-w} f = \lim_{z \to -w} \left((z+w)^2 f(z) \right)' = \lim_{z \to -w} (\pi \operatorname{cotan}(\pi z))' = -\frac{\pi^2}{\sin^2(\pi w)^2}.$$

(c) Compute for every integer $n \ge 1$ such that |w| < n the line integral

$$\int_{\gamma_n} f \, dz,$$

where γ_n is the circle or radius n + 1/2 centered at the origin and positively oriented. **SOL:** Observe that γ_n does not intersect with any of the poles of f and contains the pole -w. We can therefore apply the Residue Theorem obtaining

$$\int_{\gamma_n} f \, dz = 2\pi i \left(\operatorname{res}_{-w} f + \sum_{k=-n}^n \operatorname{res}_k f \right) = 2\pi i \left(-\frac{\pi^2}{\sin^2(\pi w)} + \sum_{k=-n}^n \frac{1}{(w+k)^2} \right).$$

(d) Deduce that

$$\lim_{n \to +\infty} \sum_{k=-n}^{n} \frac{1}{(w+k)^2} = \frac{\pi^2}{\sin(\pi w)^2}.$$

SOL: From the previous point, since

$$\sum_{k=-k}^{k} \frac{1}{(w+k)^2} = \frac{1}{2\pi i} \int_{\gamma_n} f \, dz + \frac{\pi^2}{\sin(\pi w)^2},$$

it suffices to prove that the integral on γ_n vanishes as $n \to +\infty$. Observe that

$$|\cot(\pi z)| = \left| i \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \right| = \left| \frac{1 + e^{2i\pi z}}{e^{2i\pi z} - 1} \right| \le \frac{1 + |e^{2i\pi z}|}{||e^{2\pi i z}| - 1|} = \frac{1 + e^{-2\pi\Im(z)}}{|e^{-2\pi\Im(z)} - 1|}$$

taking advantage of the reverse triangle inequality $|w - u| \ge ||w| - |u||$. Hence, for every $\varepsilon > 0$ the function $\cot(\pi z)$ is uniformly bounded in the half plane $\{\Im(z) > \varepsilon\}$

November 23, 2023

2/7

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Solutions 8	HS 2023

by $C(\varepsilon) = 2/(1 - e^{-2\pi\varepsilon}) > 0$. The same holds true in the half plane $\{\Im(z) < -\varepsilon\}$ since $\cotan(-\pi z) = -\cotan(\pi z)$. Let now $n \in \mathbb{Z}$ and consider a point in a 2ε -neighbourhood of $n\pi + 1/2$, i.e. $u = n + 1/2 + \tau$, for $\tau \in \mathbb{C}$, $|\tau| < 2\varepsilon$. Then, taking advantage of the classical trigonometric identities we can compute

$$\cot(\pi u) = \frac{\cos(u)}{\sin(u)} = \frac{\cos(\pi(n+1/2))\cos(\pi\tau) - \sin(\pi(n+1/2))\sin(\pi\tau)}{\sin(\pi(n+1/2))\cos(\pi\tau) + \cos(\pi(n+1/2))\sin(\pi\tau)}$$
$$= -\frac{\sin(\pi\tau)}{\cos(\pi\tau)} = -\tan(\pi\tau),$$

whose norm is controlled uniformly in n by some constant $C' = C'(\varepsilon) > 0$ provided $\varepsilon < 1/2$. Hence, fixing $\varepsilon < 1/2$ and covering every circle γ_n with two half planes and two balls centered in the intersection of the real axis we can estimate

$$\begin{aligned} \left| \int_{\gamma_n} f \, dx \right| &\leq \int_{\gamma_n} |f| \, dz \leq \text{length}(\gamma_n) \frac{\pi \max\{C, C'\}}{(n+1/2 - |w|)^2} \\ &= \frac{2\pi^2 (n+1/2) \max\{C, C'\}}{(n+1/2 - |w|)^2} \to 0, \end{aligned}$$

as $n \to +\infty$, as wished.

8.2. Analytic continuation Let $f : \mathbb{C} \to \mathbb{C}$ be and entire function. Then, for every $w \in \mathbb{C}$ we can write

$$f(z) = \sum_{n=0}^{+\infty} a_n^w (z - w)^n,$$

for suitable coefficients $(a_n^w)_n$ in \mathbb{C} . Let $B \subset \mathbb{C}$ be an open ball. We suppose that for every $w \in B$ there exists $m \geq 0$ such that $a_m^w = 0$.

November 23, 2023

(a) For every $n \ge 0$ define the set

$$A(n) := \{ w \in B : a_n^w = 0 \}.$$

Show that there exists $m \ge 0$ such that A(m) is uncountable.

SOL: By contradiction, suppose that for every *n* the set A(n) can be written as the image of a complex sequence $(b_{n,k})_k$:

$$A(n) = \{b_{n,k} : k \in \mathbb{N}\}.$$

Then, the set $A = \bigcup_n A(n) = \{b_{n,k} : n, k \ge 0\}$ is also at most countable because it injects into $\mathbb{N} \times \mathbb{N}$. By assumption for every $w \in \Omega$ there exists m such that $w \in A(m)$, implying that

$$B \subset A$$
,

which is a contradiction because B is uncountable. Therefore, there must be $m \ge 0$ such that A(m) is uncountable.

(b) Deduce that f is a polynomial or degree at most m.

SOL: Let $m \ge 0$ such that $B \subset \Omega$ is uncountable. For every $w \in B$ one has that

$$f^{(m)}(w) = \sum_{n=m}^{+\infty} \frac{n!}{(n-m)!} a_n^w (z-w)^{n-m} \Big|_{z=w} = a_n^w = 0.$$

But this implies that the holomorphic function $g := f^{(m)}$ has non-isolated zeros in B (the whole set A(m)!), which is possible only if $g \equiv 0$ in all B. Hence, f has to be a polynomial of degree at most m in B, and consequently in all \mathbb{C} by analytic continuation.

8.3. Real integrals Compute the following real integrals taking advantage of the Residue Theorem¹.

(a)

$$\int_0^\pi \frac{\cos(4t)}{\sin(t)^2 + 1} \, dt.$$

November 23, 2023

¹Recall: $\{z_1, \ldots, z_N\} \subset \Omega$ poles and $f: \Omega \setminus \{z_1, \ldots, z_N\} \to \mathbb{C}$ holomorphic. Then if $\{z_1, \ldots, z_N\}$ are inside a simple closed curve γ in Ω , then $\int_{\gamma} f \, dz = 2\pi i \sum_{j=1}^{N} \operatorname{res}_{z_j}(f)$.

SOL: In order to take advantage of the Residue Theorem, we need to express this real integral as a complex one. We notice that

$$\int_0^\pi \frac{\cos(4t)}{\sin(t)^2 + 1} dt = \Re \left(\int_0^\pi \frac{e^{4it}}{\sin(t)^2 + 1} dt \right)$$
$$= \Re \left(\int_0^\pi \frac{e^{4it}}{((e^{it} - e^{-it})/(2i))^2 + 1} dt \right)$$
$$= -4\Re \left(\int_0^\pi \frac{e^{4it}}{e^{2it} + e^{-2it} - 6} dt \right)$$
$$= -4\Re \left(\int_0^\pi \frac{e^{6it}}{e^{4it} - 6e^{2it} + 1} dt \right).$$

where in the last line we multiplied numerator and denominator by e^{2it} . We notice now that $t \mapsto e^{2it}$ for $t \in [0, \pi]$ is a parametrization of the unit circle, and hence the above expression is equal to

$$-4\Re\left(\int_{|z|=1}\frac{z^3}{z^2-6z+1}\frac{1}{2iz}\,dz\right) = -2\Re\left(\frac{1}{i}\int_{|z|=1}\frac{z^2}{z^2-6z+1}\,dz\right)$$

Since the roots of $z^2 - 6z + 1$ are $z_1 = 3 - 2\sqrt{2}$ and $z_2 = 3 + 2\sqrt{2}$, both of order 1, the function $\frac{z^2}{z^2 - 6z + 1}$ has two poles of order one in z_1 , z_2 . Notice that since only z_1 belongs to the interior of the unit circle, we get

$$\int_0^\pi \frac{\cos(4t)}{\sin(t)^2 + 1} dt = -2\Re\left(\frac{1}{i} \int_{|z|=1}^\pi \frac{z^2}{z^2 - 6z + 1} dz\right)$$
$$= -2\Re\left(2\pi i \frac{1}{i} \operatorname{res}_{3-2\sqrt{2}}\left(\frac{z^2}{z^2 - 6z + 1}\right)\right)$$
$$= -4\pi \lim_{z \to 3-2\sqrt{2}} \frac{z^2(z - 3 + 2\sqrt{2})}{z^2 - 6z + 1} = \pi \frac{17 - 12\sqrt{2}}{\sqrt{2}}$$

(b)

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} \, dx.$$

SOL: To compute this integral we need to find a suitable contour. For R > 1 consider γ_R to be the positively oriented boundary of half disk of radius R: $D := \{z \in \mathbb{C} : \Im(z) > 0, |z| < R\}$. Dividing the curve in the segment $\gamma_R^s := \{-R < t < R\}$ and the upper arc $\gamma_R^a := \{Re^{it} : t \in [0, \pi]\}$, we have that

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = \lim_{R \to +\infty} \int_{-R}^{R} \frac{1}{x^4 + 1} dx = \lim_{R \to +\infty} \int_{\gamma_R^s} \frac{1}{z^4 + 1} dz$$
$$= \lim_{R \to +\infty} \left(\int_{\gamma_R} \frac{1}{z^4 + 1} dz - \int_{\gamma_R^a} \frac{1}{z^4 + 1} dz \right).$$

November 23, 2023

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Solutions 8	Prof. Dr. Ö. Imamoglu

We notice that the integral over the arc goes to zero as $R \to +\infty$ since

$$\left|\int_{\gamma_R^a} \frac{1}{z^4+1} \, dz\right| \leq \frac{\pi R}{R^4-1} \to 0, \quad \text{ as } R \to +\infty.$$

On the other hand, the poles of $1/(z^4 - 1)$ are of order one and equal to $\pm \frac{1+i}{\sqrt{2}}$ and $\pm \frac{1-i}{\sqrt{2}}$. For R > 1 only two poles are contained in the the interior of γ : $z_1 = \frac{1+i}{\sqrt{2}}$ and $z_2 = \frac{-1+i}{\sqrt{2}}$. Since

$$\operatorname{res}_{z_1} \frac{1}{z^4 + 1} = -\frac{1+i}{4\sqrt{2}},$$

$$\operatorname{res}_{z_2} \frac{1}{z^4 + 1} = -\frac{1-i}{4\sqrt{2}},$$

we conclude that

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = \lim_{R \to +\infty} \left(\int_{\gamma_R} \frac{1}{z^4 + 1} dz - \int_{\gamma_R^a} \frac{1}{z^4 + 1} dz \right)$$
$$= \lim_{R \to +\infty} \int_{\gamma_R} \frac{1}{z^4 + 1} dz$$
$$= 2\pi i \frac{-2i}{2\sqrt{4}} = \frac{\pi}{\sqrt{2}}.$$

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Solutions 8	HS 2023

8.4. Quotient of holomorphic functions Let f, g be two non-constant holomorphic functions on \mathbb{C} . Show that if $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$, then there exists $c \in \mathbb{C}$ such that f(z) = cg(z).

SOL: Let $h(z) = \frac{f(z)}{g(z)}$. Since g is not constant, it has isolated zeros, and hence h has isolated singularities. By assumption $|h(z)| \leq 1$ for all z such that $g(z) \neq 0$. In particular, h is bounded in a neighbourhood of the zeros of g, and therefore we extend h to an entire function on the whole complex plane taking advantage of the Riemann continuation Theorem (cf Exercise 5.5). By continuity, the extension h is also uniformly bounded by 1, and therefore by Liouville's Theorem it has to be equal to some constant $c \in \mathbb{C}$. This proves that for all $z \in \mathbb{C}$ such that $g(z) \neq 0$ one has that f(z) = cg(z). If g(z) = 0 the assumption $|f(z)| \leq |g(z)| = 0$ concludes the argument: f(z) = 0 = cg(z).