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Exercises with a ⋆ are eligible for bonus points.

8.1. Meromorphic functions For z ∈ C such that sin(z) ̸= 0 define the map

cotan(z) = cos(z)
sin(z) .

(a) Show that cotan is meromorphic in C, determine its poles and their residues.

SOL: Notice that sin(z) = 0 if and only if z = kπ for some k ∈ Z, and therefore
cotan is holomorphic in the open domain C \ {kπ : k ∈ Z}. Since {kπ : k ∈ Z} has
no accumulation points in C, in order to prove that cotan is meromorphic we are left
to show that its singularities are in fact poles. By definition z = kπ is a pole of cotan
if it is a zero of 1/ cotan = tan, which is the case since cos(kπ) = (−1)k. To compute
the residues we notice that all poles have order one since the zeros of tan have order
one:

tan(z)′ |z=kπ= 1
cos2(z)

∣∣∣∣
z=kπ

= 1 ̸= 0.

Therefore,

reskπ cotan = lim
z→kπ

(z − kπ)cos(z)
sin(z) = (−1)k lim

z→kπ

(z − kπ)
sin(z) = (−1)2k = 1,

since

lim
z→kπ

sin(z)
z − kπ

= lim
z→kπ

cos(kπ)(z − kπ) + O(|z − kπ|2)
(z − kπ) = (−1)k,

by expanding sin(z) around kπ at the first order.

(b) Let w ∈ C \ Z and define

f(z) = π cotan(πz)
(z + w)2 .

Show that f is meromorphic in C, determine its poles and their residues.

SOL: Since z 7→ cotan(πz) and z 7→ 1/(z + w)2 are meromorphic, f is also meromor-
phic by being the multiplication of the two. Thanks to the previous point, the set of
poles of f are Z ∪ {−w}. The residues at k ∈ Z are given by

resk f = 1
(k + w)2 lim

z→k

π(z − k) cos(πz)
sin(πz)

= (−1)k

(k + w)2 lim
z→k

π(z − k)
π cos(πz)(z − k) + O(|z − k|2) = 1

(k + w)2 .
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To compute the order of −w observe that cotan(πz) is equal to zero if and only if
z = k + 1/2, k ∈ Z. Hence, if −w = k + 1/2, then the pole has order 1 and

res−w f = lim
z→−w

(z + w)f(z) = lim
z→−w

π cos(πz)
sin(πz)(z + w)

= lim
z→−w

π(−π sin(−πw)(z + w) + O(|z + w|2))
sin(−πw)(z + w) = −π2 = − π2

sin(πw)2 .

If −w ̸= k + 1/2, then the pole has order 2, and

res−w f = lim
z→−w

(
(z + w)2f(z)

)′
= lim

z→−w
(π cotan(πz))′ = − π2

sin2(πw)2 .

(c) Compute for every integer n ≥ 1 such that |w| < n the line integral∫
γn

f dz,

where γn is the circle or radius n + 1/2 centered at the origin and positively oriented.

SOL: Observe that γn does not intersect with any of the poles of f and contains the
pole −w. We can therefore apply the Residue Theorem obtaining∫

γn

f dz = 2πi
(

res−w f +
n∑

k=−n

resk f
)

= 2πi
(

− π2

sin2(πw) +
n∑

k=−n

1
(w + k)2

)
.

(d) Deduce that

lim
n→+∞

n∑
k=−n

1
(w + k)2 = π2

sin(πw)2 .

SOL: From the previous point, since

k∑
k=−k

1
(w + k)2 = 1

2πi

∫
γn

f dz + π2

sin(πw)2 ,

it suffices to prove that the integral on γn vanishes as n → +∞. Observe that

|cotan(πz)| =
∣∣∣∣∣ieiπz + e−iπz

eiπz − e−iπz

∣∣∣∣∣ =
∣∣∣∣∣1 + e2iπz

e2iπz − 1

∣∣∣∣∣ ≤ 1 + |e2iπz|
||e2πiz| − 1|

= 1 + e−2πℑ(z)

|e−2πℑ(z) − 1|
.

taking advantage of the reverse triangle inequality |w − u| ≥ ||w| − |u||. Hence, for
every ε > 0 the function cotan(πz) is uniformly bounded in the half plane {ℑ(z) > ε}
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by C(ε) = 2/(1 − e−2πε) > 0. The same holds true in the half plane {ℑ(z) < −ε}
since cotan(−πz) = − cotan(πz). Let now n ∈ Z and consider a point in a 2ε-
neighbourhood of nπ + 1/2, i.e. u = n + 1/2 + τ , for τ ∈ C, |τ | < 2ε. Then, taking
advantage of the classical trigonometric identities we can compute

cotan(πu) = cos(u)
sin(u) = cos(π(n + 1/2)) cos(πτ) − sin(π(n + 1/2)) sin(πτ)

sin(π(n + 1/2)) cos(πτ) + cos(π(n + 1/2)) sin(πτ)

= − sin(πτ)
cos(πτ) = − tan(πτ),

whose norm is controlled uniformly in n by some constant C ′ = C ′(ε) > 0 provided
ε < 1/2. Hence, fixing ε < 1/2 and covering every circle γn with two half planes and
two balls centered in the intersection of the real axis we can estimate∣∣∣∣∫

γn

f dx

∣∣∣∣ ≤
∫

γn

|f | dz ≤ length(γn) π max{C, C ′}
(n + 1/2 − |w|)2

= 2π2(n + 1/2) max{C, C ′}
(n + 1/2 − |w|)2 → 0,

as n → +∞, as wished.

2ε

8.2. Analytic continuation Let f : C → C be and entire function. Then, for every
w ∈ C we can write

f(z) =
+∞∑
n=0

aw
n (z − w)n,

for suitable coefficients (aw
n )n in C. Let B ⊂ C be an open ball. We suppose that for

every w ∈ B there exists m ≥ 0 such that aw
m = 0.
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(a) For every n ≥ 0 define the set

A(n) := {w ∈ B : aw
n = 0}.

Show that there exists m ≥ 0 such that A(m) is uncountable.

SOL: By contradiction, suppose that for every n the set A(n) can be written as the
image of a complex sequence (bn,k)k:

A(n) = {bn,k : k ∈ N}.

Then, the set A = ⋃
n A(n) = {bn,k : n, k ≥ 0} is also at most countable because it

injects into N×N. By assumption for every w ∈ Ω there exists m such that w ∈ A(m),
implying that

B ⊂ A,

which is a contradiction because B is uncountable. Therefore, there must be m ≥ 0
such that A(m) is uncountable.

(b) Deduce that f is a polynomial or degree at most m.

SOL: Let m ≥ 0 such that B ⊂ Ω is uncountable. For every w ∈ B one has that

f (m)(w) =
+∞∑
n=m

n!
(n − m)!a

w
n (z − w)n−m

∣∣∣∣
z=w

= aw
n = 0.

But this implies that the holomorphic function g := f (m) has non-isolated zeros in
B (the whole set A(m)!), which is possible only if g ≡ 0 in all B. Hence, f has to
be a polynomial of degree at most m in B, and consequently in all C by analytic
continuation.

8.3. Real integrals Compute the following real integrals taking advantage of the
Residue Theorem1.

(a) ∫ π

0

cos(4t)
sin(t)2 + 1 dt.

1Recall: {z1, . . . , zN } ⊂ Ω poles and f : Ω \ {z1, . . . , zN } → C holomorphic. Then if {z1, . . . , zN }
are inside a simple closed curve γ in Ω, then

∫
γ

f dz = 2πi
∑N

j=1 reszj
(f).
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SOL: In order to take advantage of the Residue Theorem, we need to express this
real integral as a complex one. We notice that∫ π

0

cos(4t)
sin(t)2 + 1 dt = ℜ

(∫ π

0

e4it

sin(t)2 + 1 dt
)

= ℜ
(∫ π

0

e4it

((eit − e−it)/(2i))2 + 1 dt
)

= −4ℜ
(∫ π

0

e4it

e2it + e−2it − 6 dt
)

= −4ℜ
(∫ π

0

e6it

e4it − 6e2it + 1 dt
)

.

where in the last line we multiplied numerator and denominator by e2it. We notice
now that t 7→ e2it for t ∈ [0, π] is a parametrization of the unit circle, and hence the
above expression is equal to

−4ℜ
(∫

|z|=1

z3

z2 − 6z + 1
1

2iz
dz

)
= −2ℜ

(1
i

∫
|z|=1

z2

z2 − 6z + 1 dz
)

Since the roots of z2 − 6z + 1 are z1 = 3 − 2
√

2 and z2 = 3 + 2
√

2, both of order 1,
the function z2

z2−6z+1 has two poles of order one in z1, z2. Notice that since only z1
belongs to the interior of the unit circle, we get∫ π

0

cos(4t)
sin(t)2 + 1 dt = −2ℜ

(1
i

∫
|z|=1

z2

z2 − 6z + 1 dz
)

= −2ℜ
(

2πi
1
i

res3−2
√

2

(
z2

z2 − 6z + 1

))

= −4π lim
z→3−2

√
2

z2(z − 3 + 2
√

2)
z2 − 6z + 1 = π

17 − 12
√

2√
2

.

(b) ∫ ∞

−∞

1
x4 + 1 dx.

SOL: To compute this integral we need to find a suitable contour. For R > 1 consider
γR to be the positively oriented boundary of half disk of radius R: D := {z ∈ C :
ℑ(z) > 0, |z| < R}. Dividing the curve in the segment γs

R := {−R < t < R} and the
upper arc γa

R := {Reit : t ∈ [0, π]}, we have that∫ ∞

−∞

1
x4 + 1 dx = lim

R→+∞

∫ R

−R

1
x4 + 1 dx = lim

R→+∞

∫
γs

R

1
z4 + 1 dz

= lim
R→+∞

(∫
γR

1
z4 + 1 dz −

∫
γa

R

1
z4 + 1 dz

)
.
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We notice that the integral over the arc goes to zero as R → +∞ since∣∣∣∣∣
∫

γa
R

1
z4 + 1 dz

∣∣∣∣∣ ≤ πR

R4 − 1 → 0, as R → +∞.

On the other hand, the poles of 1/(z4 − 1) are of order one and equal to ±1+i√
2 and

±1−i√
2 . For R > 1 only two poles are contained in the the interior of γ: z1 = 1+i√

2 and
z2 = −1+i√

2 . Since

resz1

1
z4 + 1 = −1 + i

4
√

2
,

resz2

1
z4 + 1 = −1 − i

4
√

2
,

we conclude that∫ ∞

−∞

1
x4 + 1 dx = lim

R→+∞

(∫
γR

1
z4 + 1 dz −

∫
γa

R

1
z4 + 1 dz

)
= lim

R→+∞

∫
γR

1
z4 + 1 dz

= 2πi
−2i

2
√

4
= π√

2
.

D

γ
a

R

γ
s

R
R−R
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8.4. Quotient of holomorphic functions Let f, g be two non-constant holomorphic
functions on C. Show that if |f(z)| ≤ |g(z)| for all z ∈ C, then there exists c ∈ C
such that f(z) = cg(z).

SOL: Let h(z) = f(z)
g(z) . Since g is not constant, it has isolated zeros, and hence h

has isolated singularities. By assumption |h(z)| ≤ 1 for all z such that g(z) ̸= 0.
In particular, h is bounded in a neighbourhood of the zeros of g, and therefore we
extend h to an entire function on the whole complex plane taking advantage of the
Riemann continuation Theorem (cf Exercise 5.5). By continuity, the extension h
is also uniformly bounded by 1, and therefore by Liouville’s Theorem it has to be
equal to some constant c ∈ C. This proves that for all z ∈ C such that g(z) ̸= 0 one
has that f(z) = cg(z). If g(z) = 0 the assumption |f(z)| ≤ |g(z)| = 0 concludes the
argument: f(z) = 0 = cg(z).
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