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Exercises with a ⋆ are eligible for bonus points.

9.1. Laurent Series A Laurent series centered at z0 ∈ C is a series of the form∑
n∈Z

an(z − z0)n = · · · + a−2

(z − z0)2 + a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + . . .

where (an)n∈Z ⊂ C. We define ρ0, ρI ∈ [0, +∞] the outer and inner radius of
convergence as

ρ0 :=
(

lim sup
n→+∞

|an|1/n
)−1

, ρI := lim sup
n→+∞

|a−n|1/n.

If ρI < ρ0, we define the annulus of convergence as

A(z0, ρI , ρ0) := {z ∈ C : ρI < |z − z0| < ρ0},

with the convention A(z0, ρI , +∞) = {z ∈ C : ρI < |z − z0|}, so that in particular
A(z0, 0, +∞) = C \ {z0}.

(a) Show that if ρ0 > 0, then the series

f0(z) :=
+∞∑
n=0

an(z − z0)n, z ∈ D0(z0, ρ0) := {z ∈ C : |z − z0| < ρ0},

converges absolutely and uniformly on compact sets. Show that if ρI < +∞, then
the series

fI(z) :=
+∞∑
n=1

a−n(z − z0)−n, z ∈ DI(z0, ρI) := {z ∈ C : ρI < |z − z0|},

converges absolutely and uniformly on compact sets.

SOL: In the case ρ0 > 0, notice that f0 and ρ0 coincide with a Taylor expansion in z0
and the radius of convergence of its associated power series. We know that the series
defining f0 converges absolutely and uniformly on compact subsets of D0(z0, ρ0) (by
Theorem 2.5 in the Lecture Notes). For the case ρI < +∞, consider first the power
series

gI(ζ) =
+∞∑
n=1

a−nζn.

Then, by the same argument as in the previous case, we know that gI converges
absolutely and uniformly on compact subset in D(0, 1/ρI), the ball centered at 0
and of radius (lim supn→+∞|a−n|1/n)−1 = 1/ρI . Consider the change of variable
ζ = (z − z0)−1. Now, the map F (z) = (z − z0)−1 sends DI(z0, ρI) to D(0, 1/ρI) \ {0}
continuously, and therefore it sends compact subsets of DI(z0, ρI) to compact subsets
of D(0, 1/ρI) \ {0}. From the relation fI = gI ◦ F we deduce that fI also converges
uniformly on compact subsets in DI(z0, ρI) as wished.
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(b) Show that a Laurent series is divergent for any z satisfying |z − z0| > ρ0 or
|z − z0| < ρI .

SOL: The argument is similar to point (a): if |z − z0| > ρ0 the series f0(z) diverges,
again by Theorem 2.5 in the Lecture Notes. The same hold for gI(ζ) when |ζ| =
|z − z0|−1 > 1/ρI , and hence for fI(z) when |z − z0| < ρI . Since f = f0 + fI we
conclude that f(z) diverges if |z − z0| < ρI or |z − z0| > ρ0 as wished.

(c) Deduce that the full Laurent series

f(z) :=
∑
n∈Z

an(z − z0)n

defines an analytic function in A(z0, ρI , ρ0), and its coefficients are related to f by
the formula

an = 1
2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1 dz,

for any n ∈ Z and r ∈ (ρI , ρ0).

SOL: Since f = fI + f0 and fI is analytic in DI(z0, ρI) and f0 is analytic in D0(z0, ρ0)
by point (a), we deduce that f is analytic in A(z0, ρI , ρ0) = DI(z0, ρ0)∩D0(z0, ρI). Let
r ∈ (ρI , ρ0) and ε > 0 small enough so that K = A(z0, r − ε, r + ε) ⊂ A(z0, ρI , ρ0).
Since f converges absolutely an uniformly on the compact set K, we have that

1
2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1 dz =

∑
k∈Z

ak
1

2πi

∫
|z−z0|=r

(z − z0)k−(n+1) dz = an,

where we exchanged sum and integration by Fubini thanks to the uniform convergence
of the series defining f in the compact set K.

9.2. Meromorphic functions Recall the definition of Ĉ := C ∪ {∞}.

(a) Let f : C → Ĉ be meromorphic. Show that f has at most countably many poles.

SOL: Since by definition the poles of a meromorphic function cannot have limit points,
any compact subset of C contains at most finitely many poles. Since every open set Ω in
C is a union of countably many compact sets (for instance, C = ⋃+∞

n=1{z ∈ C : |z| ≤ n}),
it follows that the set of poles of f is at most countable.

(b) Let f : Ĉ → Ĉ be meromorphic on Ĉ. Show that f has at most finitely many
poles.

SOL: There exists R > 0 such that f is holomorphic for every |z| > R. Hence, the
poles of f are contained in the compact set {|z| ≤ R} with the possible exception of
∞. Again, since by definition there is no accumulation point, the number of poles
must be finite.
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(c) Deduce that if f : Ĉ → Ĉ is meromorphic on Ĉ, than it is a rational function.

SOL: By point (b) we know that the zeros of f in C are finite, and we can therefore
denote them {z1, . . . , zN} with respective order {n1, . . . , nN}. For each k ∈ {1, . . . , N}
we can express f in a neighbourhood of zk as

f(z) =
nk∑

n=1

ak
−n

(z − zk)n
+

+∞∑
n=0

ak
n(z − zk)n = fk(z) + gk(z),

for coefficients (ak
n)n≥−nk

, where fk is the principal part of f at zk, and gk is holomor-
phic in a neighbourhood of zk. Similarly,

f(1/z) = f∞(z) + g∞(z),

where g∞ is holomorphic in a neighbourhood of the origin, and f∞ is the principal
part of f(1/z) at zero. Define now C(z) = f(z) − f∞(1/z) − ∑N

k=1 fk(z). Notice that
since we removed the principal parts of f at each zk in the definition of C(z), we
deduce that {z1, . . . , zN} are removable singularities of C(z). The same holds for the
possible pole at ∞ since C(1/z) is bounded in a neighbourhood of zero, and therefore
C(z) is bounded in C. Hence, by Liouville’s Theorem, C(z) ≡ c ∈ C is constant, and
therefore f(z) = c + f∞(1/z) + ∑N

k=1 fk(z) is rational, as claimed.

9.3. Generalization of the Argument Principle Let Ω ⊂ C open, z0 ∈ Ω and
r > 0 such that D̄(z0, r) = {z ∈ C : |z − z0| ≤ r} ⊂ Ω. Suppose that f : Ω → C is
homolorphic and that f(z) ̸= 0 on the circle ∂D(z0, r) = {z ∈ C : |z − z0| = r}. Show
that for any holomorphic function φ : Ω → C we have that

1
2πi

∫
|z−z0|=r

f ′

f
φ dz =

∑
w∈D(z0,r):f(w)=0

(ordw f)φ(w).

SOL: Let w be a zero of f of order n. Then, there exists g holomorphic and
non-vanishing such that f(z) = (z − w)ng(z). From

f ′(z)
f(z) φ(z) = n

z − w
g(z)φ(z) + g′(z)

g(z) φ(z)

we deduce that if φ(w) = 0, then w is not a zero of f ′φ/f , and hence ordw(f ′φ/f) =
0 = (ordw f)φ(w). On the other side, if φ(w) ̸= 0, then w is pole of order one of
f ′φ/f with residue

resw(f ′φ/f) = lim
z→w

(ng(z)φ(z)+(z−w)g′(z)φ(z)/g(z)) = ng(w)φ(w) = (ordw f)φ(w).
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We apply the Residue Theorem to conclude:

1
2πi

∫
|z−z0|=r

f ′

f
φ dz =

∑
w pole in |z−z0|<r

resw

(
f ′φ

f

)
=

∑
w∈D(z0,r):f(w)=0

(ordw f)φ(w).

9.4. Application of Rouché Theorem Take advantage of the Rouché Theorem 1

to solve the following.

(a) Show that the polynomial

p(z) = z4 + z3 + 4z2 + 1

has exactly 2 zeros in {z ∈ C : 1 < |z| < 3}.

SOL: Set g(z) = z4 + z3 + 1 and f(z) = 4z2 so that p = f + g. On {z ∈ C : |z| = 1}
we check that

|f(z)| = |4z2| = 4 > 3 = |z4| + |z3| + 1 ≥ |z4 + z3 + 1| = |g(z)|,

so that by the Rouché Theorem, the number of zeros of p in {z ∈ C : |z| < 1} has to
be the same as 4z2, hence two. On the other side, choosing now g(z) = z3 + 4z2 + 1
and f(z) = z4, on {z ∈ C : |z| = 3} we check that

|f(z)| = |z4| = 81 > 64 = |z3| + 4|z2| + 1 ≥ |z3 + 4z2 + 1| = |g(z)|,

proving that p has 4 zeros in {z ∈ C : |z| < 3}. Taking the difference, we conclude
that p has exactly 4 − 2 = 2 zeros in the annulus {z ∈ C : 1 < |z| < 3}.

(b) For every 1 < λ consider the map

fλ(z) := z + λ − e−z.

Show that fλ has exactly one zero z0 in the half plane Ω = {z ∈ C : ℜ(z) < 0}. Show
that ℑ(z0) = 0, that is z0 belongs to the real axis.

SOL: Let R > 1 + λ and consider the half circle HR := {z ∈ C : |z| < R, ℜ(z) < 0}.
Let γ be a counterclockwise parametrization of its boundary

∂HR = {it : t ∈ [−R, R]} ∪ {Reit : t ∈ (π/2, 3π/2)}.

1Recall: Let f, g : Ω → C holomorphic and γ a closed, simple curve in Ω such that its interior lies
in Ω. If |f(z)| > |g(z)| for all z ∈ γ, then f and f + g have the same number of zeros in the
interior of γ.
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Let f(z) = z + λ and g(z) = −ez so that fλ = f + g. For z ∈ {Reit : t ∈ (π/2, 3π/2)}

|f(z)| ≥ |z| − λ = R − λ > 1 ≥ |g(z)|

and for z ∈ {it : t ∈ [−R, R]}

|f(z)| ≥ λ > 1 = |g(z)|.

Since f dominates g on γ, we deduce by Rouché Theorem that fλ has exactly one zero
inside HR (since f has a unique zero f(−λ) = 0 of multiplicity one in HR), and hence
in the whole half plane {z ∈ C : ℜ(z) < 0} by arbitrariness of R > 1 + λ. Now, since
f is real valued on {z ∈ C : ℑ(z) = 0}, f(0) = λ − 1 > 0, and f(−λ) = −e−λ < 0,
we deduce by continuity that there exists a zero in the segment (−λ, 0) ⊂ C. By
uniqueness, this zero coincide with the one whose existence was proved in the first
part of the exercise.
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