Exercises with $a \star$ are eligible for bonus points.
9.1. Laurent Series A Laurent series centered at $z_{0} \in \mathbb{C}$ is a series of the form

$$
\sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n}=\cdots+\frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

where $\left(a_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{C}$. We define $\rho_{0}, \rho_{I} \in[0,+\infty]$ the outer and inner radius of convergence as

$$
\rho_{0}:=\left(\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}\right)^{-1}, \quad \rho_{I}:=\underset{n \rightarrow+\infty}{\limsup }\left|a_{-n}\right|^{1 / n} .
$$

If $\rho_{I}<\rho_{0}$, we define the annulus of convergence as

$$
\mathcal{A}\left(z_{0}, \rho_{I}, \rho_{0}\right):=\left\{z \in \mathbb{C}: \rho_{I}<\left|z-z_{0}\right|<\rho_{0}\right\},
$$

with the convention $\mathcal{A}\left(z_{0}, \rho_{I},+\infty\right)=\left\{z \in \mathbb{C}: \rho_{I}<\left|z-z_{0}\right|\right\}$, so that in particular $\mathcal{A}\left(z_{0}, 0,+\infty\right)=\mathbb{C} \backslash\left\{z_{0}\right\}$.
(a) Show that if $\rho_{0}>0$, then the series

$$
f_{0}(z):=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad z \in \mathcal{D}_{0}\left(z_{0}, \rho_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\rho_{0}\right\}
$$

converges absolutely and uniformly on compact sets. Show that if $\rho_{I}<+\infty$, then the series

$$
f_{I}(z):=\sum_{n=1}^{+\infty} a_{-n}\left(z-z_{0}\right)^{-n}, \quad z \in \mathcal{D}_{I}\left(z_{0}, \rho_{I}\right):=\left\{z \in \mathbb{C}: \rho_{I}<\left|z-z_{0}\right|\right\}
$$

converges absolutely and uniformly on compact sets.
SOL: In the case $\rho_{0}>0$, notice that f_{0} and ρ_{0} coincide with a Taylor expansion in z_{0} and the radius of convergence of its associated power series. We know that the series defining f_{0} converges absolutely and uniformly on compact subsets of $\mathcal{D}_{0}\left(z_{0}, \rho_{0}\right)$ (by Theorem 2.5 in the Lecture Notes). For the case $\rho_{I}<+\infty$, consider first the power series

$$
g_{I}(\zeta)=\sum_{n=1}^{+\infty} a_{-n} \zeta^{n}
$$

Then, by the same argument as in the previous case, we know that g_{I} converges absolutely and uniformly on compact subset in $D\left(0,1 / \rho_{I}\right)$, the ball centered at 0 and of radius $\left(\lim \sup _{n \rightarrow+\infty}\left|a_{-n}\right|^{1 / n}\right)^{-1}=1 / \rho_{I}$. Consider the change of variable $\zeta=\left(z-z_{0}\right)^{-1}$. Now, the map $F(z)=\left(z-z_{0}\right)^{-1}$ sends $\mathcal{D}_{I}\left(z_{0}, \rho_{I}\right)$ to $D\left(0,1 / \rho_{I}\right) \backslash\{0\}$ continuously, and therefore it sends compact subsets of $\mathcal{D}_{I}\left(z_{0}, \rho_{I}\right)$ to compact subsets of $D\left(0,1 / \rho_{I}\right) \backslash\{0\}$. From the relation $f_{I}=g_{I} \circ F$ we deduce that f_{I} also converges uniformly on compact subsets in $\mathcal{D}_{I}\left(z_{0}, \rho_{I}\right)$ as wished.
(b) Show that a Laurent series is divergent for any z satisfying $\left|z-z_{0}\right|>\rho_{0}$ or $\left|z-z_{0}\right|<\rho_{I}$.

SOL: The argument is similar to point (a): if $\left|z-z_{0}\right|>\rho_{0}$ the series $f_{0}(z)$ diverges, again by Theorem 2.5 in the Lecture Notes. The same hold for $g_{I}(\zeta)$ when $|\zeta|=$ $\left|z-z_{0}\right|^{-1}>1 / \rho_{I}$, and hence for $f_{I}(z)$ when $\left|z-z_{0}\right|<\rho_{I}$. Since $f=f_{0}+f_{I}$ we conclude that $f(z)$ diverges if $\left|z-z_{0}\right|<\rho_{I}$ or $\left|z-z_{0}\right|>\rho_{0}$ as wished.
(c) Deduce that the full Laurent series

$$
f(z):=\sum_{n \in \mathbb{Z}} a_{n}\left(z-z_{0}\right)^{n}
$$

defines an analytic function in $\mathcal{A}\left(z_{0}, \rho_{I}, \rho_{0}\right)$, and its coefficients are related to f by the formula

$$
a_{n}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z,
$$

for any $n \in \mathbb{Z}$ and $r \in\left(\rho_{I}, \rho_{0}\right)$.
SOL: Since $f=f_{I}+f_{0}$ and f_{I} is analytic in $\mathcal{D}_{I}\left(z_{0}, \rho_{I}\right)$ and f_{0} is analytic in $\mathcal{D}_{0}\left(z_{0}, \rho_{0}\right)$ by point (a), we deduce that f is analytic in $\mathcal{A}\left(z_{0}, \rho_{I}, \rho_{0}\right)=\mathcal{D}_{I}\left(z_{0}, \rho_{0}\right) \cap \mathcal{D}_{0}\left(z_{0}, \rho_{I}\right)$. Let $r \in\left(\rho_{I}, \rho_{0}\right)$ and $\varepsilon>0$ small enough so that $K=\overline{\mathcal{A}\left(z_{0}, r-\varepsilon, r+\varepsilon\right)} \subset \mathcal{A}\left(z_{0}, \rho_{I}, \rho_{0}\right)$. Since f converges absolutely an uniformly on the compact set K, we have that

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\sum_{k \in \mathbb{Z}} a_{k} \frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r}\left(z-z_{0}\right)^{k-(n+1)} d z=a_{n}
$$

where we exchanged sum and integration by Fubini thanks to the uniform convergence of the series defining f in the compact set K.
9.2. Meromorphic functions Recall the definition of $\hat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$.
(a) Let $f: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ be meromorphic. Show that f has at most countably many poles.

SOL: Since by definition the poles of a meromorphic function cannot have limit points, any compact subset of \mathbb{C} contains at most finitely many poles. Since every open set Ω in \mathbb{C} is a union of countably many compact sets (for instance, $\mathbb{C}=\bigcup_{n=1}^{+\infty}\{z \in \mathbb{C}:|z| \leq n\}$), it follows that the set of poles of f is at most countable.
(b) Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be meromorphic on $\hat{\mathbb{C}}$. Show that f has at most finitely many poles.

SOL: There exists $R>0$ such that f is holomorphic for every $|z|>R$. Hence, the poles of f are contained in the compact set $\{|z| \leq R\}$ with the possible exception of ∞. Again, since by definition there is no accumulation point, the number of poles must be finite.
(c) Deduce that if $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is meromorphic on $\hat{\mathbb{C}}$, than it is a rational function.

SOL: By point (b) we know that the zeros of f in \mathbb{C} are finite, and we can therefore denote them $\left\{z_{1}, \ldots, z_{N}\right\}$ with respective order $\left\{n_{1}, \ldots, n_{N}\right\}$. For each $k \in\{1, \ldots, N\}$ we can express f in a neighbourhood of z_{k} as

$$
f(z)=\sum_{n=1}^{n_{k}} \frac{a_{-n}^{k}}{\left(z-z_{k}\right)^{n}}+\sum_{n=0}^{+\infty} a_{n}^{k}\left(z-z_{k}\right)^{n}=f_{k}(z)+g_{k}(z),
$$

for coefficients $\left(a_{n}^{k}\right)_{n \geq-n_{k}}$, where f_{k} is the principal part of f at z_{k}, and g_{k} is holomorphic in a neighbourhood of z_{k}. Similarly,

$$
f(1 / z)=f_{\infty}(z)+g_{\infty}(z)
$$

where g_{∞} is holomorphic in a neighbourhood of the origin, and f_{∞} is the principal part of $f(1 / z)$ at zero. Define now $C(z)=f(z)-f_{\infty}(1 / z)-\sum_{k=1}^{N} f_{k}(z)$. Notice that since we removed the principal parts of f at each z_{k} in the definition of $C(z)$, we deduce that $\left\{z_{1}, \ldots, z_{N}\right\}$ are removable singularities of $C(z)$. The same holds for the possible pole at ∞ since $C(1 / z)$ is bounded in a neighbourhood of zero, and therefore $C(z)$ is bounded in \mathbb{C}. Hence, by Liouville's Theorem, $C(z) \equiv c \in \mathbb{C}$ is constant, and therefore $f(z)=c+f_{\infty}(1 / z)+\sum_{k=1}^{N} f_{k}(z)$ is rational, as claimed.
9.3. Generalization of the Argument Principle Let $\Omega \subset \mathbb{C}$ open, $z_{0} \in \Omega$ and $r>0$ such that $\bar{D}\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\} \subset \Omega$. Suppose that $f: \Omega \rightarrow \mathbb{C}$ is homolorphic and that $f(z) \neq 0$ on the circle $\partial D\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. Show that for any holomorphic function $\varphi: \Omega \rightarrow \mathbb{C}$ we have that

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f^{\prime}}{f} \varphi d z=\sum_{w \in D\left(z_{0}, r:: f(w)=0\right.}\left(\operatorname{ord}_{w} f\right) \varphi(w)
$$

SOL: Let w be a zero of f of order n. Then, there exists g holomorphic and non-vanishing such that $f(z)=(z-w)^{n} g(z)$. From

$$
\frac{f^{\prime}(z)}{f(z)} \varphi(z)=\frac{n}{z-w} g(z) \varphi(z)+\frac{g^{\prime}(z)}{g(z)} \varphi(z)
$$

we deduce that if $\varphi(w)=0$, then w is not a zero of $f^{\prime} \varphi / f$, and hence $\operatorname{ord}_{w}\left(f^{\prime} \varphi / f\right)=$ $0=\left(\operatorname{ord}_{w} f\right) \varphi(w)$. On the other side, if $\varphi(w) \neq 0$, then w is pole of order one of $f^{\prime} \varphi / f$ with residue
$\operatorname{res}_{w}\left(f^{\prime} \varphi / f\right)=\lim _{z \rightarrow w}\left(n g(z) \varphi(z)+(z-w) g^{\prime}(z) \varphi(z) / g(z)\right)=n g(w) \varphi(w)=\left(\operatorname{ord}_{w} f\right) \varphi(w)$.

We apply the Residue Theorem to conclude:

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f^{\prime}}{f} \varphi d z=\sum_{w \text { pole in }\left|z-z_{0}\right|<r} \operatorname{res}_{w}\left(\frac{f^{\prime} \varphi}{f}\right)=\sum_{w \in D\left(z_{0}, r\right): f(w)=0}\left(\operatorname{ord}_{w} f\right) \varphi(w)
$$

9.4. Application of Rouché Theorem Take advantage of the Rouché Theorem ${ }^{1}$ to solve the following.
(a) Show that the polynomial

$$
p(z)=z^{4}+z^{3}+4 z^{2}+1
$$

has exactly 2 zeros in $\{z \in \mathbb{C}: 1<|z|<3\}$.
SOL: Set $g(z)=z^{4}+z^{3}+1$ and $f(z)=4 z^{2}$ so that $p=f+g$. On $\{z \in \mathbb{C}:|z|=1\}$ we check that

$$
|f(z)|=\left|4 z^{2}\right|=4>3=\left|z^{4}\right|+\left|z^{3}\right|+1 \geq\left|z^{4}+z^{3}+1\right|=|g(z)|,
$$

so that by the Rouché Theorem, the number of zeros of p in $\{z \in \mathbb{C}:|z|<1\}$ has to be the same as $4 z^{2}$, hence two. On the other side, choosing now $g(z)=z^{3}+4 z^{2}+1$ and $f(z)=z^{4}$, on $\{z \in \mathbb{C}:|z|=3\}$ we check that

$$
|f(z)|=\left|z^{4}\right|=81>64=\left|z^{3}\right|+4\left|z^{2}\right|+1 \geq\left|z^{3}+4 z^{2}+1\right|=|g(z)|
$$

proving that p has 4 zeros in $\{z \in \mathbb{C}:|z|<3\}$. Taking the difference, we conclude that p has exactly $4-2=2$ zeros in the annulus $\{z \in \mathbb{C}: 1<|z|<3\}$.
(b) For every $1<\lambda$ consider the map

$$
f_{\lambda}(z):=z+\lambda-e^{-z} .
$$

Show that f_{λ} has exactly one zero z_{0} in the half plane $\Omega=\{z \in \mathbb{C}: \Re(z)<0\}$. Show that $\Im\left(z_{0}\right)=0$, that is z_{0} belongs to the real axis.

SOL: Let $R>1+\lambda$ and consider the half circle $H_{R}:=\{z \in \mathbb{C}:|z|<R, \Re(z)<0\}$. Let γ be a counterclockwise parametrization of its boundary

$$
\partial H_{R}=\{i t: t \in[-R, R]\} \cup\left\{R e^{i t}: t \in(\pi / 2,3 \pi / 2)\right\} .
$$

[^0]Let $f(z)=z+\lambda$ and $g(z)=-e^{z}$ so that $f_{\lambda}=f+g$. For $z \in\left\{R e^{i t}: t \in(\pi / 2,3 \pi / 2)\right\}$

$$
|f(z)| \geq|z|-\lambda=R-\lambda>1 \geq|g(z)|
$$

and for $z \in\{i t: t \in[-R, R]\}$

$$
|f(z)| \geq \lambda>1=|g(z)|
$$

Since f dominates g on γ, we deduce by Rouché Theorem that f_{λ} has exactly one zero inside H_{R} (since f has a unique zero $f(-\lambda)=0$ of multiplicity one in H_{R}), and hence in the whole half plane $\{z \in \mathbb{C}: \Re(z)<0\}$ by arbitrariness of $R>1+\lambda$. Now, since f is real valued on $\{z \in \mathbb{C}: \Im(z)=0\}, f(0)=\lambda-1>0$, and $f(-\lambda)=-e^{-\lambda}<0$, we deduce by continuity that there exists a zero in the segment $(-\lambda, 0) \subset \mathbb{C}$. By uniqueness, this zero coincide with the one whose existence was proved in the first part of the exercise.

[^0]: ${ }^{1}$ Recall: Let $f, g: \Omega \rightarrow \mathbb{C}$ holomorphic and γ a closed, simple curve in Ω such that its interior lies in Ω. If $|f(z)|>|g(z)|$ for all $z \in \gamma$, then f and $f+g$ have the same number of zeros in the interior of γ.

