D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Solutions 10	HS 2023

Exercises with a \star are eligible for bonus points.

10.1. Laurent Series II Let $0 \le s_1 < r_1 < r_2 < s_2$, and set $U = \mathcal{A}(0, s_1, s_2)$ and $V = \mathcal{A}(0, r_1, r_2)$ (like in Exercise 9.1). Denote with γ_1 and γ_2 the circles of radius r_1 and r_2 , respectively, positively oriented. Let $f : U \to \mathbb{C}$ be a general holomorphic function.

(a) Show that the functions

$$g_1(z) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w-z} \, dw, \quad \text{for } |z| > r_1$$

and

$$g_2(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(w)}{w - z} \, dw, \quad \text{for } |z| < r_2,$$

are well defined and holomorphic.

SOL: We prove this for g_1 via Morera's Theorem. The proof for g_2 is similar. First, notice that g_1 is continuous in $W = \{z : |z| > r_1\}$: fix $z_1 \in W$ distant d > 0 from γ_1 . Then, for every $z_2 \in W$ distant $\delta > 0$ from z_1 ($\delta < d/2$) we get

$$|g_1(z_1) - g_1(z_2)| = \left| \frac{1}{2\pi i} \int_{\gamma_1} f(w) \left(\frac{1}{w - z_1} - \frac{1}{w - z_2} \right) dz \right|$$

$$\leq 2r_1 \max_{w \in \gamma_1} |f(w)| d^{-2} \delta.$$

for any $\varepsilon > 0$ and $\delta = \delta(\varepsilon) > 0$ small enough. Now given $\varepsilon > 0$ choose $0 < \delta = \delta(\varepsilon) < \min(d/2, \varepsilon d^2/2r_1 \max_{w \in \gamma_1} |f(w)|)$ to conclude the argument. Let now $T \subset W$ a generic triangle in W. Since $z \mapsto 1/(w-z)$ is holomorphic (and hence continuous) in W, by Fubini we check that

$$\int_{T} g_1(z) dz = \frac{1}{2\pi i} \int_{T} \int_{\gamma_1} \frac{f(w)}{w-z} dw dz = \frac{1}{2\pi i} \int_{\gamma_1} f(w) \underbrace{\int_{T} \frac{1}{w-z} dz}_{=0 \text{ by Goursat}} dw = 0.$$

Hence, g_1 is holomorphic in W by Morera's theorem.

(b) Let γ be the closed curve obtained by going along γ_2 starting at r_2 , then along the segment joining r_2 to r_1 , then along $-\gamma_1$, and finally back via the segment joining r_1 to r_2 . Let $z_0 \in V$ and r > 0 small enough such that $\sigma = \{z \in \mathbb{C} : |z - z_0| = r\}$ is in V. Explain why σ and γ are homotopic in U.

SOL: By 'inflating' σ , one can show that it is homotopic to a little sector of annulus. Then, by deforming this sector continuously in the interior of γ it is clear that by overlapping its two flat ends, one obtains the curve γ with the correct orientation.

(c) Show that $f = g_2 - g_1$ in V.

SOL: By independence of Cauchy formula under homotopies, we get that

$$f(z) = \int_{\sigma} \frac{f(w)}{w - z} dw = \int_{\gamma} \frac{f(w)}{w - z} dw$$

= $\int_{\gamma_2} \frac{f(w)}{w - z} dw - \int_{\gamma_1} \frac{f(w)}{w - z} dw + \int_{r_1}^{r_2} \frac{f(w)}{w - z} dw - \int_{r_1}^{r_2} \frac{f(w)}{w - z} dw = g_2(z) - g_1(z).$

(d) Deduce that f can be represented as a Laurent serie, meaning: there exists a sequence $(a_n)_{n\in\mathbb{Z}}$ such that the series $\sum_{n\geq 1} a_n z^n$ and $\sum_{n\geq 1} a_{-n} z^{-n}$ are absolutely convergent in V, and satisfy

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$
, in V.

SOL: By the previous point, it suffices to show that g_1 and g_2 can be represented as a Laurent series. Since g_2 is holomorphic in $\{|z| < r_2\}$ it admits a Taylor expansion

December 5, 2023

2/5

(which is in particular a Laurent series) in the disk and $g_2(z) = \sum_{n\geq 0} a_n z^n$. For g_1 we can write

$$g_{1}(z) = \frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{w - z} dw = -\frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{z} \frac{1}{1 - w/z} dw$$
$$= -\frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{z} \sum_{k \ge 0} \left(\frac{w}{z}\right)^{k} dw$$
$$= \sum_{n \le -1} \left(-\frac{1}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{w^{n+1}} dw\right) z^{n} = \sum_{n \le -1} a_{n} z^{n},$$

as wished, where we took advantage of Fubini's Theorem to interchange sum and integration.

10.2. Logarithm Let U be an open and simply connected domain of \mathbb{C} , and $f: U \to \mathbb{C}$ a non-vanishing holomorphic function. Fix $z_0 \in U$ and denote with γ_z an arbitrary curve in U connecting z_0 to z.

(a) Show that the function

$$g(z) = \int_{\gamma_z} \frac{f'}{f} \, dw_z$$

is well defined and holomorphic in U, and that $g'(z) = \frac{f'(z)}{f(z)}$ for all $z \in U$.

SOL: Since integrating an holomorphic function over a closed curve in a simply connected domain gives always zero, the integral defining g does not depend on the choice of γ_z . Fix $z \in U$ and $\gamma_z : [0,1] \to U$ connecting z_0 to z. Let $\tau \in \mathbb{C}$ with $|\tau|$ small enough so that the curve $\gamma_{z+\tau} : t \mapsto (\gamma_z(t) + t\tau)$ is contained in U. Obviously, $\gamma_{z+\tau}$ connects z_0 with $z + \tau$, and γ_z concatenated with the segment joining z to $z + \tau$ and $-\gamma_{z+\tau}$ is a closed curve. Hence

$$\frac{g(z+\tau) - g(z)}{\tau} = \frac{1}{\tau} \left(\int_{\gamma_{z+\tau}} \frac{f'}{f} \, dw - \int_{\gamma_z} \frac{f'}{f} \, dw \right) = \frac{1}{\tau} \int_{\{z+t\tau:t\in[0,1]\}} \frac{f'}{f} \, dw$$
$$= \frac{1}{\tau} \int_0^1 \frac{f'(z+t\tau)}{f(z+t\tau)} \tau \, dt = \int_0^1 \frac{f'(z+t\tau)}{f(z+t\tau)} \, dt,$$

which by continuity of f'/f converges to $\int_0^1 f'(z)/f(z) dt = f'(z)/f(z)$ as $\tau \to 0$, proving that g' = f'/f.

(b) Compute the derivative of $\frac{\exp(g(z))}{f(z)}$.

SOL: By the previous point

$$\left(\frac{e^g}{f}\right)' = \frac{e^g g' f - e^g f'}{f^2} = e^g \frac{f'/f \cdot f - f'}{f^2} = 0.$$

ETH Zürich	Complex Analysis	D-MATH
HS 2023	Solutions 10	Prof. Dr. Ö. Imamoglu

(c) Deduce that there exists \tilde{g} holomorphic in U such that $f = \exp(\tilde{g})$. Is this function unique?

SOL: From the previous point we get that e^g/f is equal to some constant $c \in \mathbb{C}$. Therefore, $cf = e^g$, so it suffices to take $c' \in \mathbb{C}$ so that $e^{c'} = c$ and set $\tilde{g} = g - c'$ to have $e^{\tilde{g}} = f$. Notice that the same works by adding to c' an integer multiple of $2\pi i$, so \tilde{g} is not unique in general.

(d) Show that for every $n \in \mathbb{N}$ there exists an holomorphic function $h_n : U \to \mathbb{C}$ such that $(h_n)^n = f$.

SOL: Just take $h_n := \exp(\frac{1}{n}\tilde{g})$, where \tilde{g} is as in the previous point.

10.3. Complex vs Real Is it true that if $u, v : \mathbb{C} \to \mathbb{R}$ are smooth and open maps, then f = u + iv is open? Answer from the perspective of the Open Mapping Theorem.

SOL: No, in general this is false: just consider u(x, y) = v(x, y) = x for instance. Both functions are open since they are projections on the real axis, but the images of f = u + iv are never open because the real axis is not open in \mathbb{C} . We deduce that the Open Mapping Theorem is a property of holomoprhic functions which is ensured by the extra condition of Cauchy-Riemann equations.

10.4. Symmetric Rouché

(a) Prove the following variation of Rouché's Theorem by Theodor Estermann (1962): Suppose f, g are holomorphic functions in an open domain $\Omega \subset \mathbb{C}$ and $\gamma \subset \Omega$ a simple, closed curve. If

 $|f(z) + g(z)| < |f(z)| + |g(z)|, \text{ for all } z \in \gamma,$

then f and g share the same number of zeros in the interior of γ .

Hint: consider the convex combination tf(z) - (1-t)g(z).

SOL: Consider the map h(t, z) := tf(z) - (1 - t)g(z). Notice that h is continuous in $t \in [0, 1], h(0, z) = -g(z)$ and h(1, z) = f(z). Now, we claim that $h(t, z) \neq 0$ on γ for $t \in (0, 1]$. In fact, if h(t, w) = 0 then $f(w) = \frac{1-t}{t}g(w)$ and therefore

$$|f(w) + g(w)| = \left| \left(\frac{1-t}{t} + 1 \right) g(w) \right| = \frac{1}{t} |g(w)| = \left(\frac{1}{t} - 1 \right) |g(w)| + |g(w)|$$
$$= |f(w)| + |g(w)|,$$

contradicting the assumption |f + g| < |f| + |g| on γ . In fact, recall that the triangle inequality $||a + b|| \le ||a|| + ||b||$ in \mathbb{R}^n is an equality if and only if a and b are collinear. Now, if suffices to apply the Argument Principle and continuity of h for $t \to 0$:

$$\#\{w \in \operatorname{int}(\gamma) : g(w) = 0\} = \int_{\gamma} \frac{g'}{g} dz = \lim_{t \to 0} \int_{\gamma} \frac{h(t, \cdot)'}{h(t, \cdot)} dz$$
$$= \lim_{t \to 0} \#\{w \in \operatorname{int}(\gamma) : h(t, w) = 0\} = \#\{w \in \operatorname{int}(\gamma) : f(w) = 0\},$$

since the map $t \mapsto \#\{w \in int(\gamma) : h(t, w) = 0\}$ is continuous and has integer value, and hence constant for all $t \in [0, 1]$.

(b) Show that the above result implies Rouché Theorem as we have seen it in class.

SOL: Let f and g so that |g| < |f|. Apply the Theorem in (a) to $\tilde{g} = g - f$ and $\tilde{f} = f$, observing that $f(z) \neq -g(z)$ on γ .

(c) Show with a simple counterexample that the result of point (a) is stronger than Rouché Theorem as we have seen it in class.

SOL: Take for instance f = 1 and g = i, or f generic and g = -f. If you are interested in more sophisticated classes of examples, we refer to Section 1 here: https://hal.science/hal-01093927/document

10.5. Maps preserving orthogonality Let $\Omega \in \mathbb{R}^2$ open, and $f : \Omega \to \mathbb{R}^2$ smooth. Show that if f is orientation preserving ¹ and sends curves intersecting orthogonally to curves intersecting orthogonally, then f is holomorphic (by identifying \mathbb{R}^2 with \mathbb{C}).

SOL: By the Cauchy-Riemann equations, it is sufficient to prove that the Jacobian matrix of f = u + iv is pointwise equal to

$$Df(x,y) = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

for some functions a, b. Now, since f sends curves that intersects orthogonally to curves that intersects orthogonally, we get in particular that

$$Df(x,y) \cdot (1,0)^t \perp Df(x,y) \cdot (0,1)^t$$
,

that is $(A, C) \perp (B, D)$, implying that (-C, A) is collinear to (B, D), meaning that there exists $\kappa \in \mathbb{R}$ such that $-\kappa C = B$ and $\kappa A = D$. Also, since f preserves the orientation, $0 < \det(Df(x, y)) = \kappa A^2 + \kappa C^2$, implying that $\kappa > 0$. We are left to prove that $\kappa = 1$. Let now $(x, y) \in \mathbb{R}^2 \setminus \{0\}$, then from

$$Df(x,y) \cdot (x,y)^t \perp Df(x,y) \cdot (-y,x)^t \quad \Leftrightarrow \quad (\kappa^2 - 1)(A^2 + C^2)xy = 0,$$

implying $\kappa = 1$, as wished.

¹That is the determinant of its Jacobian is positive.