Exercises with $a \star$ are eligible for bonus points.
10.1. Laurent Series II Let $0 \leq s_{1}<r_{1}<r_{2}<s_{2}$, and set $U=\mathcal{A}\left(0, s_{1}, s_{2}\right)$ and $V=\mathcal{A}\left(0, r_{1}, r_{2}\right)$ (like in Exercise 9.1). Denote with γ_{1} and γ_{2} the circles of radius r_{1} and r_{2}, respectively, positively oriented. Let $f: U \rightarrow \mathbb{C}$ be a general holomorphic function.
(a) Show that the functions

$$
g_{1}(z)=\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(w)}{w-z} d w, \quad \text { for }|z|>r_{1},
$$

and

$$
g_{2}(z)=\frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f(w)}{w-z} d w, \quad \text { for }|z|<r_{2},
$$

are well defined and holomorphic.
SOL: We prove this for g_{1} via Morera's Theorem. The proof for g_{2} is similar. First, notice that g_{1} is continuous in $W=\left\{z:|z|>r_{1}\right\}$: fix $z_{1} \in W$ distant $d>0$ from γ_{1}. Then, for every $z_{2} \in W$ distant $\delta>0$ from $z_{1}(\delta<d / 2)$ we get

$$
\begin{aligned}
\left|g_{1}\left(z_{1}\right)-g_{1}\left(z_{2}\right)\right| & =\left|\frac{1}{2 \pi i} \int_{\gamma_{1}} f(w)\left(\frac{1}{w-z_{1}}-\frac{1}{w-z_{2}}\right) d z\right| \\
& \leq 2 r_{1} \max _{w \in \gamma_{1}}|f(w)| d^{-2} \delta .
\end{aligned}
$$

for any $\varepsilon>0$ and $\delta=\delta(\varepsilon)>0$ small enough. Now given $\varepsilon>0$ choose $0<\delta=$ $\delta(\varepsilon)<\min \left(d / 2, \varepsilon d^{2} / 2 r_{1} \max _{w \in \gamma_{1}}|f(w)|\right)$ to conclude the argument. Let now $T \subset W$ a generic triangle in W. Since $z \mapsto 1 /(w-z)$ is holomorphic (and hence continuous) in W, by Fubini we check that

$$
\int_{T} g_{1}(z) d z=\frac{1}{2 \pi i} \int_{T} \int_{\gamma_{1}} \frac{f(w)}{w-z} d w d z=\frac{1}{2 \pi i} \int_{\gamma_{1}} f(w) \underbrace{\int_{T} \frac{1}{w-z} d z}_{=0 \text { by Goursat }} d w=0 .
$$

Hence, g_{1} is holomorphic in W by Morera's theorem.
(b) Let γ be the closed curve obtained by going along γ_{2} starting at r_{2}, then along the segment joining r_{2} to r_{1}, then along $-\gamma_{1}$, and finally back via the segment joining r_{1} to r_{2}. Let $z_{0} \in V$ and $r>0$ small enough such that $\sigma=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$ is in V. Explain why σ and γ are homotopic in U.

SOL: By 'inflating' σ, one can show that it is homotopic to a little sector of annulus. Then, by deforming this sector continuously in the interior of γ it is clear that by overlapping its two flat ends, one obtains the curve γ with the correct orientation.

(c) Show that $f=g_{2}-g_{1}$ in V.

SOL: By independence of Cauchy formula under homotopies, we get that

$$
\begin{aligned}
f(z) & =\int_{\sigma} \frac{f(w)}{w-z} d w=\int_{\gamma} \frac{f(w)}{w-z} d w \\
& =\int_{\gamma_{2}} \frac{f(w)}{w-z} d w-\int_{\gamma_{1}} \frac{f(w)}{w-z} d w+\int_{r_{1}}^{r_{2}} \frac{f(w)}{w-z} d w-\int_{r_{1}}^{r_{2}} \frac{f(w)}{w-z} d w=g_{2}(z)-g_{1}(z) .
\end{aligned}
$$

(d) Deduce that f can be represented as a Laurent serie, meaning: there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ such that the series $\sum_{n \geq 1} a_{n} z^{n}$ and $\sum_{n \geq 1} a_{-n} z^{-n}$ are absolutely convergent in V, and satisfy

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}, \quad \text { in } V
$$

SOL: By the previous point, it suffices to show that g_{1} and g_{2} can be represented as a Laurent series. Since g_{2} is holomorphic in $\left\{|z|<r_{2}\right\}$ it admits a Taylor expansion
(which is in particular a Laurent series) in the disk and $g_{2}(z)=\sum_{n \geq 0} a_{n} z^{n}$. For g_{1} we can write

$$
\begin{aligned}
g_{1}(z) & =\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(w)}{w-z} d w=-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(w)}{z} \frac{1}{1-w / z} d w \\
& =-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(w)}{z} \sum_{k \geq 0}\left(\frac{w}{z}\right)^{k} d w \\
& =\sum_{n \leq-1}\left(-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(w)}{w^{n+1}} d w\right) z^{n}=\sum_{n \leq-1} a_{n} z^{n},
\end{aligned}
$$

as wished, where we took advantage of Fubini's Theorem to interchange sum and integration.
10.2. Logarithm Let U be an open and simply connected domain of \mathbb{C}, and $f: U \rightarrow \mathbb{C}$ a non-vanishing holomorphic function. Fix $z_{0} \in U$ and denote with γ_{z} an arbitrary curve in U connecting z_{0} to z.
(a) Show that the function

$$
g(z)=\int_{\gamma_{z}} \frac{f^{\prime}}{f} d w,
$$

is well defined and holomorphic in U, and that $g^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}$ for all $z \in U$.
SOL: Since integrating an holomorphic function over a closed curve in a simply connected domain gives always zero, the integral defining g does not depend on the choice of γ_{z}. Fix $z \in U$ and $\gamma_{z}:[0,1] \rightarrow U$ connecting z_{0} to z. Let $\tau \in \mathbb{C}$ with $|\tau|$ small enough so that the curve $\gamma_{z+\tau}: t \mapsto\left(\gamma_{z}(t)+t \tau\right)$ is contained in U. Obviously, $\gamma_{z+\tau}$ connects z_{0} with $z+\tau$, and γ_{z} concatenated with the segment joining z to $z+\tau$ and $-\gamma_{z+\tau}$ is a closed curve. Hence

$$
\begin{aligned}
\frac{g(z+\tau)-g(z)}{\tau} & =\frac{1}{\tau}\left(\int_{\gamma_{z+\tau}} \frac{f^{\prime}}{f} d w-\int_{\gamma_{z}} \frac{f^{\prime}}{f} d w\right)=\frac{1}{\tau} \int_{\{z+t \tau: t \in[0,1]\}} \frac{f^{\prime}}{f} d w \\
& =\frac{1}{\tau} \int_{0}^{1} \frac{f^{\prime}(z+t \tau)}{f(z+t \tau)} \tau d t=\int_{0}^{1} \frac{f^{\prime}(z+t \tau)}{f(z+t \tau)} d t
\end{aligned}
$$

which by continuity of f^{\prime} / f converges to $\int_{0}^{1} f^{\prime}(z) / f(z) d t=f^{\prime}(z) / f(z)$ as $\tau \rightarrow 0$, proving that $g^{\prime}=f^{\prime} / f$.
(b) Compute the derivative of $\frac{\exp (g(z))}{f(z)}$.

SOL: By the previous point

$$
\left(\frac{e^{g}}{f}\right)^{\prime}=\frac{e^{g} g^{\prime} f-e^{g} f^{\prime}}{f^{2}}=e^{g} \frac{f^{\prime} / f \cdot f-f^{\prime}}{f^{2}}=0 .
$$

(c) Deduce that there exists \tilde{g} holomorphic in U such that $f=\exp (\tilde{g})$. Is this function unique?

SOL: From the previous point we get that e^{g} / f is equal to some constant $c \in \mathbb{C}$. Therefore, $c f=e^{g}$, so it suffices to take $c^{\prime} \in \mathbb{C}$ so that $e^{c^{\prime}}=c$ and set $\tilde{g}=g-c^{\prime}$ to have $e^{\tilde{g}}=f$. Notice that the same works by adding to c^{\prime} an integer multiple of $2 \pi i$, so \tilde{g} is not unique in general.
(d) Show that for every $n \in \mathbb{N}$ there exists an holomorphic function $h_{n}: U \rightarrow \mathbb{C}$ such that $\left(h_{n}\right)^{n}=f$.

SOL: Just take $h_{n}:=\exp \left(\frac{1}{n} \tilde{g}\right)$, where \tilde{g} is as in the previous point.
10.3. Complex vs Real Is it true that if $u, v: \mathbb{C} \rightarrow \mathbb{R}$ are smooth and open maps, then $f=u+i v$ is open? Answer from the perspective of the Open Mapping Theorem.

SOL: No, in general this is false: just consider $u(x, y)=v(x, y)=x$ for instance. Both functions are open since they are projections on the real axis, but the images of $f=u+i v$ are never open because the real axis is not open in \mathbb{C}. We deduce that the Open Mapping Theorem is a property of holomoprhic functions which is ensured by the extra condition of Cauchy-Riemann equations.

10.4. Symmetric Rouché

(a) Prove the following variation of Rouché's Theorem by Theodor Estermann (1962): Suppose f, g are holomorphic functions in an open domain $\Omega \subset \mathbb{C}$ and $\gamma \subset \Omega$ a simple, closed curve. If

$$
|f(z)+g(z)|<|f(z)|+|g(z)|, \quad \text { for all } z \in \gamma
$$

then f and g share the same number of zeros in the interior of γ.
Hint: consider the convex combination $t f(z)-(1-t) g(z)$.
SOL: Consider the map $h(t, z):=t f(z)-(1-t) g(z)$. Notice that h is continuous in $t \in[0,1], h(0, z)=-g(z)$ and $h(1, z)=f(z)$. Now, we claim that $h(t, z) \neq 0$ on γ for $t \in(0,1]$. In fact, if $h(t, w)=0$ then $f(w)=\frac{1-t}{t} g(w)$ and therefore

$$
\begin{aligned}
|f(w)+g(w)| & =\left|\left(\frac{1-t}{t}+1\right) g(w)\right|=\frac{1}{t}|g(w)|=\left(\frac{1}{t}-1\right)|g(w)|+|g(w)| \\
& =|f(w)|+|g(w)|,
\end{aligned}
$$

contradicting the assumption $|f+g|<|f|+|g|$ on γ. In fact, recall that the triangle inequality $\|a+b\| \leq\|a\|+\|b\|$ in \mathbb{R}^{n} is an equality if and only if a and b are collinear. Now, if suffices to apply the Argument Principle and continuity of h for $t \rightarrow 0$:

$$
\begin{aligned}
\#\{w & \in \operatorname{int}(\gamma): g(w)=0\}=\int_{\gamma} \frac{g^{\prime}}{g} d z=\lim _{t \rightarrow 0} \int_{\gamma} \frac{h(t, \cdot)^{\prime}}{h(t, \cdot)} d z \\
& =\lim _{t \rightarrow 0} \#\{w \in \operatorname{int}(\gamma): h(t, w)=0\}=\#\{w \in \operatorname{int}(\gamma): f(w)=0\}
\end{aligned}
$$

since the map $t \mapsto \#\{w \in \operatorname{int}(\gamma): h(t, w)=0\}$ is continuous and has integer value, and hence constant for all $t \in[0,1]$.
(b) Show that the above result implies Rouché Theorem as we have seen it in class.

SOL: Let f and g so that $|g|<|f|$. Apply the Theorem in (a) to $\tilde{g}=g-f$ and $\tilde{f}=f$, observing that $f(z) \neq-g(z)$ on γ.
(c) Show with a simple counterexample that the result of point (a) is stronger than Rouché Theorem as we have seen it in class.

SOL: Take for instance $f=1$ and $g=i$, or f generic and $g=-f$. If you are interested in more sophisticated classes of examples, we refer to Section 1 here: https://hal.science/hal-01093927/document
10.5. Maps preserving orthogonality Let $\Omega \in \mathbb{R}^{2}$ open, and $f: \Omega \rightarrow \mathbb{R}^{2}$ smooth. Show that if f is orientation preserving ${ }^{1}$ and sends curves intersecting orthogonally to curves intersecting orthogonally, then f is holomorphic (by identifying \mathbb{R}^{2} with \mathbb{C}).

SOL: By the Cauchy-Riemann equations, it is sufficient to prove that the Jacobian matrix of $f=u+i v$ is pointwise equal to

$$
D f(x, y)=\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

for some functions a, b. Now, since f sends curves that intersects orthogonally to curves that intersects orthogonally, we get in particular that

$$
D f(x, y) \cdot(1,0)^{t} \perp D f(x, y) \cdot(0,1)^{t},
$$

that is $(A, C) \perp(B, D)$, implying that $(-C, A)$ is collinear to (B, D), meaning that there exists $\kappa \in \mathbb{R}$ such that $-\kappa C=B$ and $\kappa A=D$. Also, since f preserves the orientation, $0<\operatorname{det}(D f(x, y))=\kappa A^{2}+\kappa C^{2}$, implying that $\kappa>0$. We are left to prove that $\kappa=1$. Let now $(x, y) \in \mathbb{R}^{2} \backslash\{0\}$, then from

$$
D f(x, y) \cdot(x, y)^{t} \perp D f(x, y) \cdot(-y, x)^{t} \quad \Leftrightarrow \quad\left(\kappa^{2}-1\right)\left(A^{2}+C^{2}\right) x y=0
$$

implying $\kappa=1$, as wished.

[^0]
[^0]: ${ }^{1}$ That is the determinant of its Jacobian is positive.

