Exercises with $a \star$ are eligible for bonus points.
12.1. Holomorphic injections Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an holomorphic injection.
(a) Let $g: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be defined as $g(z):=f(1 / z)$. Show that g has no essential singularity at zero. Argue by contradiction taking advantage of the Theorem of Casorati-Weierstrass ${ }^{1}$.

SOL: Supposing by contradiction that g has an essential singularity in zero, by the Casorati-Weierstrass Theorem

$$
D:=g(B(0,1) \backslash\{0\})=f(\mathbb{C} \backslash \bar{B}(0,1)),
$$

is dense in \mathbb{C}. Since f is injective, the set $O:=f(B(0,1))$ does not intersect D. By the Open Mapping Theorem O is open being image of an open set, and in particular there exists a non-empty open ball $B \subset O$, and hence $B \cap D=\varnothing$. This contradicts the density of D in \mathbb{C}, proving that g has no essential singularity in zero.
(b) Taking advantage of the Laurent series of f and g, prove that f is in fact a polynomial.

SOL: From the previous point, g has a pole or a removable singularity in zero. Hence, we can apply Exercise 10.1, that ensures the existence of Laurent series for g and f of the form

$$
\begin{aligned}
& g(z)=b_{-m} z^{-m}+\cdots+b_{-1} z^{-1}+b_{0}+\sum_{k=1}^{+\infty} b_{k} z^{k}, \\
& f(z)=\sum_{k=0}^{+\infty} a_{k} z^{k},
\end{aligned}
$$

where $m \in \mathbb{N} \cup\{0\}$ is the order of the pole of g in zero, and $\left(a_{k}\right),\left(b_{k}\right)$ are suitable coefficients in \mathbb{C}. From the relation $g(z)=f\left(z^{-1}\right)$ we deduce that $a_{k}=b_{-k}$ for all $k \in \mathbb{Z}$, proving that $a_{k}=0$ for all $k>m$, and hence that f is equal to the polynomial expression $f(z)=a_{0}+\cdots+a_{m} z^{m}$.
(c) Show that f is in the form $f(z)=a z+b$ for some $a, b \in \mathbb{C}$.

SOL: Since f has to be injective, $m=1$. Otherwise, there exist numbers $w \in \mathbb{C}$ such that $f(z)=w$ has exactly $m \geq 2$ solutions, which is a contradiction. We infer that $f(z)=a_{0}+a_{1} z$, as wanted.

[^0]12.2. Pointwise values Suppose h holomorphic in $\mathbb{C}, h(0)=3+4 i$, and $|h(z)| \leq 5$ if $|z| \leq 1$. What is $h^{\prime}(0)$ under these conditions?

SOL: We apply the Maximum Modulus Principle to f in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$: since $|h(0)|=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=5 \geq|f(z)|$ for all $z \in \mathbb{D}$, we see that h attains its maximum modulus in the interior of \mathbb{D}, and hence it must be constant, so in particular $h^{\prime}(0)=0$.
12.3. Estimates on the modulus Suppose that f is holomorphic on the upper half plane $\mathbb{H}:=\{z \in \mathbb{C}: \Im(z)>0\}, f(i)=0$, and that $|f(z)| \leq 1$ for all $z \in \mathbb{H}$. How big can $|f(2 i)|$ be under these conditions?

SOL: The map

$$
\varphi(z):=i \frac{1+z}{1-z}, \quad z \in \mathbb{D}
$$

sends the unit disc \mathbb{D} to the half plane \mathbb{H}. Therefore, the map $f \circ \varphi$ sends the unit disc to itself, fixing zero. Now, $\varphi(w)=2 i \Rightarrow w=1 / 3$, and hence, from the Schwarz Lemma ($|w|<1$) one has that

$$
|f(2 i)|=|f \circ \varphi(w)| \leq|w|=\frac{1}{3}
$$

proving that $|f(2 i)| \leq 1 / 3$. Taking $f=\varphi^{-1}$, one can check that in fact this estimate is sharp.
12.4. Schwarz-Pick's Lemma Denote with $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ the unit open disk in \mathbb{C}, and suppose that $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic. Prove that for all $z \in \mathbb{D}$

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

Remark: note that the above expression takes the nicer form: $\left|f^{\prime}(a)\right| \leq \frac{1-|b|^{2}}{1-|a|^{2}}$, for all $a, b \in \mathbb{D}$ such that $f(a)=b$.

SOL: For every $\alpha \in \mathbb{C}$ define the map

$$
\psi_{\alpha}(z):=\frac{z-\alpha}{1-\bar{\alpha} z} .
$$

This map is an automorphism of the disk \mathbb{D}, verifying the identity $\psi_{\alpha}(\alpha)=0$ for all $\alpha \in \mathbb{C}$. Let $w \in \mathbb{C}$. The map

$$
\psi_{f(w)} \circ f \circ \psi_{w}^{-1}
$$

maps 0 to 0 , and therefore, by the Schwarz Lemma, for all $z \in \mathbb{D}$ it holds

$$
\left|\psi_{f(w)} \circ f \circ \psi_{w}^{-1}(z)\right| \leq|z| .
$$

Setting $\tilde{z}=\psi_{w}(z)$ we get that

$$
\left|\frac{f(z)-f(w)}{1-\overline{f(w)} f(z)}\right|=\left|\psi_{f(w)} \circ f(z)\right|=\left|\psi_{f(w)} \circ f \circ \psi_{w}^{-1}(\tilde{z})\right| \leq|\tilde{z}|=\left|\psi_{w}(z)\right|=\left|\frac{z-w}{1-\bar{w} z}\right| .
$$

We can rearrange this inequality as

$$
\left|\frac{f(z)-f(w)}{z-w}\right|\left|\frac{1}{1-\overline{f(w)} f(z)}\right| \leq \frac{1}{1-\bar{w} z},
$$

Letting now $w \rightarrow z$, we deduce that the above expression converges to

$$
\left|f^{\prime}(z)\right|\left|\frac{1}{1-\left|f(z)^{2}\right|}\right|=\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}},
$$

where the first identity holds since $f(z) \in \mathbb{D}$ and hence $|f(z)|<1$.
12.5. Symmetries of the Riemann mapping Let $\Omega \subset \mathbb{C}$ be a non-empty, simply connected domain symmetric with respect to the real axis ($\{\bar{z}: z \in \Omega\}=\Omega$). For $z_{0} \in \Omega$ real, denote with $F: \Omega \rightarrow \mathbb{D}$ the unique conformal map given by the Riemann Mapping Theorem, so that $F\left(z_{0}\right)=0$ and $F^{\prime}\left(z_{0}\right)>0$. Prove that

$$
\overline{F(\bar{z})}=F(z)
$$

for all $z \in \Omega$.
Hint: take advantage of Exercise 6.3. on the Schwarz reflection principle.
SOL: Thanks to the proof in Exercise 6.3, and the symmetry of Ω and \mathbb{D} with respect to the real axis, the function $g(z):=\bar{F}(\bar{z})$ is holomorphic in Ω and has image in \mathbb{D}. We are left to show that $F=g$. We check that g is biolomorphic: in fact $g^{-1}(w)=\overline{F^{-1}(\bar{w})}$ since

$$
g(z)=w \Leftrightarrow \overline{F(\bar{z})}=w \Leftrightarrow F(\bar{z})=\bar{w} \Leftrightarrow \bar{z}=F^{-1}(\bar{w}) \Leftrightarrow z=\overline{F^{-1}(\bar{w})},
$$

and since F^{-1} is holomorphic, it follows again by the proof of Exercise 6.3 that g^{-1} is also holomorphic. Now,

$$
g\left(z_{0}\right)=\overline{F\left(\bar{z}_{0}\right)}=\overline{F\left(z_{0}\right)}=\overline{0}=0=F\left(z_{0}\right),
$$

and

$$
\begin{aligned}
g^{\prime}\left(z_{0}\right) & =\lim _{h \rightarrow 0} \frac{\overline{F\left(\overline{z_{0}+h}\right)}-\overline{F\left(\bar{z}_{0}\right)}}{h}=\overline{\left(\lim _{h \rightarrow 0} \frac{F\left(z_{0}+\bar{h}\right)-F\left(z_{0}\right)}{h}\right)} \\
& =\left(\lim _{h \rightarrow 0} \frac{F\left(z_{0}+\bar{h}\right)-F\left(z_{0}\right)}{\bar{h}}\right)=F^{\prime}\left(z_{0}\right)>0 .
\end{aligned}
$$

By uniqueness of the Riemann Mapping Theorem, we deduce that $F=g$, as wished.

[^0]: ${ }^{1}$ Recall: If $f: B(a, R) \backslash\{a\} \rightarrow \mathbb{C}$ holomorphic has an essential singularity in a, then for all $0<r<R, f(B(a, r) \backslash\{a\})$ is dense in \mathbb{C}. (Here $B(w, \rho):=\{z \in \mathbb{C}:|z-w|<\rho\}$).

