Homotopy, Homotopy Equivalence, Contractibility: Additional Exercises

- 1. (a) Show that any map $f : \mathbb{R}^n \to X$ is homotopic to the constant map.
 - (b) Are any two maps $\mathbb{R}^n \to X$ homotopic?
- 2. Let $f, g: X \to \mathbb{C} \setminus \{0\}$ be such continuous maps that |f(x) g(x)| < |f(x)| for all $x \in X$. Show that f and g are homotopic.
- 3. Let X be any topological space, $x_0 \in S^n$ and $f: S^n \to X$ a continuous map. Then the following statements are equivalent:
 - (a) i. f is homotopic to some constant map c.
 ii. There exists F: Bⁿ⁺¹ → X such that F|_{Sⁿ} = f.
 iii. f ≃ c (rel x₀).
 - (b) Maps $f, g: [-1, 1] \to \mathbb{R}^2 \setminus \{(0, 0)\}$ are defined as follows:

 $f(x) = (x, \sqrt{1-x^2})$ and $g(x) = (x, -\sqrt{1-x^2}).$

Show that $f \simeq g$, but $f \not\simeq g$ (rel $\{-1, 1\}$).

- 4. Which of the spaces \mathbb{R}^2 , $\mathbb{R}^2 \setminus \{(0,0)\}$, $\mathbb{R} \times (\mathbb{R} \setminus \{0\})$, $\mathbb{R} \times [0,\infty)$, $S^1 \times \mathbb{R}$ and Möbius band are homotopy equivalent?
- 5. Let $x_0 \in X$ be a strong deformation retract of X.
 - (a) Show that for any neighborhood U of x_0 there exists a neighborhood $V \subset U$ of x_0 such that the inclusion $i: V \hookrightarrow U$ is homotopic to a constant.
 - (b) Show that X is locally path connected in x_0 .
- 6. Let $X = (([0,1] \times \{0\}) \cup (\{0\} \times [0,1])) \bigcup (\bigcup_{n=1}^{\infty} (\{\frac{1}{n}\} \times [0,1])).$
 - (a) Show that any point $x \in X$ is a deformation retract of X.
 - (b) Find all points $x \in X$ that are strong deformation retracts of X.

7. Let

$$T = ([0,1] \times \{0\}) \cup (\cup_{\mathbb{Q} \cap [0,1]} (\{q\} \times [0,q])) \subset \mathbb{R} \times \mathbb{R}$$

and let \hat{T} be the set obtained by reflecting T across the line y = x and translating the result by (0, -1). Let $X_0 = T \cup \hat{T}$ and for $n \in \mathbb{Z}$ let X_n be the set X_0 translated by (n, n). Let $X = \bigcup_{n \in \mathbb{Z}} X_n$.

- (a) Show that any point $x \in X$ is a deformation retract of X.
- (b) Show that no point $x \in X$ is a strong deformation retract of X.
- 8. (a) Let X be contractible. Show that any $f, g: X \to Y$ are homotopic for any path connected space Y.
 - (b) Find a non-contractible space X for which any $f,g: X \to Y$ are homotopic for any path connected space Y.
- 9. If $f_0 \sim f_1 \colon X \to Y$, then $M_{f_0} \sim M_{f_1}$ rel. $X \times \{0\}$.