Homology, extra exercises

- 1. Recall that the augmentation map $\epsilon : C_0(X) \to \mathbb{Z}$ takes a 0-chain $\sum_i n_i \sigma_i$ to the integer $\sum_i n_i$. Prove that if X is non-empty and path connected then ϵ induces an isomorphism $H_0(X) \to \mathbb{Z}$.
- 2. Find a way of identifying pairs of faces of Δ^3 (standard 3-simplex) to produce a Δ -complex structure on S^3 having a single 3-simplex, and compute the simplicial homology groups of this Δ -complex.
- 3. Compute the homology groups of the Δ -complex X obtained from Δ_n by identifying all faces of the same dimension. Thus X has a single k simplex for each $k \leq n$.
- 4. Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.
- 5. Show that chain homotopy of chain maps is an equivalence relation.