Problem 1

a)
$$
T \cdot \{p\}
$$
 can be written as $b \xrightarrow{p} b$, which is homotopy equivalent
\n $+ b \xrightarrow{p} b \in \bigcup_{b} a$, so $x_4(T \cdot \{p\}) \ge x_1(S' \cdot S') = \mathbb{Z}a * \mathbb{Z}b$
\nb) By the same argument, $x_1(K \cdot \{p\}) = x_1(\bigcup_{b} \bigcup_{c} a * \mathbb{Z}b)$
\nc) Let $U = T \cdot \{p\}$, $V = B(p, \epsilon)$, a small disk around p, then $U, V, U \cap V$ are
\npath connected, so we can apply the Seifnt-van Kampen +bennew. Since
\n V is contractible and $U \cap V$ is homotopic to S^* , the theorem says that
\n $x_1(T) \ge x_1(U) * x_1(u \cdot V) \cap V = \frac{x_1(U)}{\ll \gamma}$,
\n $C \wedge V$ is under the image in $x_1(U) \wedge W$ and g .
\n $C \wedge V$ denote the non-
\n $C \wedge V$ is the image in $x_1(U) \wedge W$ and g are $W_1(U \cap V)$, and
\n $C \wedge V$ denote the non-
\n $C \wedge V$ is a non-
\n $W_1(T) = x_1(U) * x_1(U \wedge V) \wedge W$ and g are $W_1(U \cap V)$, and
\n $C \wedge V$ denote the non-
\n $W_1(T) = \frac{1}{K} \cdot \frac{$

Following the same procedure,
p $16 = \frac{Z \times 4}{B}$

$$
v_{21}(k) = \frac{Za*Zb}{Zabab^{-1}D}
$$

$$
u_{1}(k) = \frac{\angle \triangle * \angle b}{\angle \triangle \triangle b \triangle b^{1} \times 3}
$$

d)
$$
u_{1}(T) \text{ is already abelian, and the abelianization of } u_{1}(k)
$$
 is

$$
\frac{\angle a + \angle b}{\angle a + b + a - b} \approx \frac{\angle a}{\angle a} \otimes \angle b
$$

Problem 2

Let $\gamma \in \pi_1(X, x)$ be upresented by $g: [0, 1] \longrightarrow X$. Then $f_{\#}(\pi)$ is renollem 2
Let $\gamma \in \pi_1(X,x)$ be represented
presented by $\beta \circ g$. Therefore,
 $\alpha_{k,l}(f_n(x)) = \lceil f \circ a \rceil = 1$ ϕ_{γ} ($f_{\#}(\gamma)$) = [f.g] = f_{*} ([g]) = f_{*} $\phi_{\chi}(\gamma)$

Problem 3:

If ^f, ^g are two homotopic maps , the following is ^a chain homotopy of complexer: ∂z and ∂z Δ complexes:
... \rightarrow $C_2(x)$ $\xrightarrow{\partial}$ $C_1(x)$ $\xrightarrow{\partial}$ $C_6(x)$ $\xrightarrow{\epsilon}$ \mathbb{Z} \longrightarrow 0 \longrightarrow ... P_1 \qquad P_0 \qquad \qquad $32 \int_{0}^{1} \frac{f_{2}}{2} \frac{g_{1}}{2} \frac{1}{2} \int_{0}^{1} \frac{f_{0}}{2} \frac{g_{0}}{2} \frac{1}{2} \int_{0}^{1} \frac{f_{0}}{2} \frac{g_{0}}{2} \frac{1}{2} \int_{0}^{1} \frac{f_{0}}{2} \frac{1}{2} \frac{1}{2} \int_{0}^{1} \frac{f_{0}}{2} \frac{1}{2} \frac{1}{2} \int_{0}^{1} \frac{f_{0}}{2} \frac{1}{2} \frac{1}{2} \int_{0}^{1} \frac{f_{0}}{2$ L_{B} , L_{\text If f, g are two homotopic maps, the following is a chain homotopy
of complexer:
 $\ldots \longrightarrow C_2(X) \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow \infty \longrightarrow \ldots$
 $g_2 \downarrow f_2 \xrightarrow{g_3} g_1 \downarrow f_2 \xrightarrow{g_3} g_2 \downarrow f_3 \xrightarrow{\epsilon} \ldots \longrightarrow C_2(Y) \xrightarrow{\partial_1} C_1(Y) \xrightarrow{\partial_$ where Pis the prism map defined in the lectures

Problem 4 :

Give the names
$$
j, q + o
$$
 the maps $A^1 \rightarrow B^c$ and $B \rightarrow C$, respectively.

\nDefining the maps:

\n
$$
\begin{aligned}\n\hat{j} &= \{a \mid \neg \text{Re}(q) : a \mid \neg \text{Im}(q) : a \mid \text{Im}(q) : 0 \text{ and } b \text{ check that } f(a) = o = 0 \\
&= \frac{1}{2} \cdot \frac{1}{4}(a) = \frac{1}{2} \cdot \frac{1}{4}(a) = \frac{1}{2} \cdot \frac{1}{2}(a) = \frac{1}{2}(a) \cdot \frac{1}{2} \cdot \frac{1}{2}(a) = \frac{1}{2}(a) \cdot \frac{1}{2} \cdot \frac{1}{2}(a) = o = 0\n\end{aligned}
$$
\nFind the following equation:

\n
$$
\begin{aligned}\n\hat{j} &= \{ax \mid b\} : b \mid \text{Im}(a) &= \frac{1}{2} \cdot \frac{1}{2}(a) = \frac{1}{2}
$$

\n- \n
$$
x
$$
: $coker(f) \longrightarrow coker(g)$: $a + im(f) \mapsto i(a) + im(g) \cdot Onc$ *needs to check that*\n
	\n- \n $a_1 - a_2 = f(a) \epsilon im(f)$ \n then $i(a_1) - i(a_2) = g(j(a)) \epsilon im$ \n
	\n- \n \tilde{q} : $coker(g) \longrightarrow coker(h)$: $b + im(g) \longmapsto g(b) + im(h)$. Some $chack$ \n
	\n- \n Exactrens at $ker(g)$: Let $b' \epsilon$ ker(g) ϵ B'. Then $\tilde{p}(b') = o \cdot f f$. Let $d' = g(b') = o$, so,\n $j(a') = b'$, bwt any such a so-tis fies $i(f(a)) = g(b') = o$, so,\n since i is injective, such an a' in $ker(f)$.\n
	\n

$$
Exactness \text{ or } \text{ker}(h): \text{Let } c' \in \text{ker}(h). \text{ Then } \partial(c') = o \text{ iff } \text{there is some } b' \in B' \text{ such that } \partial(b) = i(o) = o \text{ if } c \in \partial B \text{ for some } b \in \text{ker}(g).
$$

Exactven at
$$
oken(f)
$$
:

\nLet $a + im(f) \in \omega$ ke (f) . Then $\tilde{\pi}(a) = 0$ iff $i(a) \in im(g)$

\n $\Leftrightarrow \exists b' \in B'$ such that $g(b') = i(a) \cdot S \text{ in } \{a\}$ such that $g(b') = 0$, thus in any much $4b'$,

\n $h(p(b')) = q(g(b')) = q \cdot (a) = 0$, this is equivalent to $a + im(f)$

\nbeing in the image of a .

Exactness at coker(g): Let b+im(g)Ecoker(g). Then q (a+im(g))=0 iff q(a)Eim(h)
 $\Leftrightarrow \exists c' \in C$ such that $h(c) = q(a)$, ent rince p is surjective, this is equivalent to the existence of some $b^{\prime} \in {^7B}^1$ such that $q(b) = \hat{h}(p(b|I)) = q(g(b|I))$, and by exactness of the bottom row, we end up recing that $\widetilde{q}(b+im(q)) = 0$ if $\exists b' \in B' \mid b - q(b') = i(a)$ for some $a \in A_j$ i.e. $i \nmid A$ $b+im(g)$ ϵ in (\tilde{f}) .

If C=0, we can back the exact sequence into the smaller sequence
$$
A \xrightarrow{f} B \rightarrow 0
$$
, $0 \rightarrow D \xrightarrow{f} E$

from which it follows that f is surjective and I is injective. For
the converse, name the maps as follows:

$$
A \xrightarrow{4} B \xrightarrow{3} C \xrightarrow{k} D \xrightarrow{l} E
$$

Then:

\n
$$
\begin{array}{ccc}\n\text{exactum at B} & 3^00 \\
\downarrow & \downarrow & \downarrow \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\text{exactum at B} & 3^00 \\
\downarrow & \downarrow & \downarrow \\
\text{exactum at C} & \downarrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{excatum at D} & \uparrow & \uparrow & \downarrow \\
\text{exactum at D} & \uparrow & \uparrow & \downarrow \\
\text{excatum at D} & \uparrow & \uparrow & \downarrow \\
\text{excatum at D} & \up
$$

If
$$
A \subset X
$$
, the long exact sequence
\n
$$
\dots \longrightarrow H_m(A) \longrightarrow H_m(X) \longrightarrow H_m(X,A) \longrightarrow H_{m-1}(A) \longrightarrow H_{m-1}(X) \longrightarrow \dots
$$
\n
$$
\downarrow
$$

tells in that $\text{Hn}(X,A)=\text{o}$ iff in is sujective and in , is injective. Therefore, $H_m(x,a)$ = 0 th ϵ in surjective and injective $\forall n \Longleftrightarrow i_n$ isom. $\forall n$