Problem 1

If a SES $0 \longrightarrow \mathbb{Z}_{p^m} \longrightarrow A \longrightarrow \mathbb{Z}_{p^n} \longrightarrow 0$ exiots, then A must be a finite group of cardinality p^{n+m} and generated by at most ² elements . Moreover , we can see that it has an element of order at least p^{maxin.mi}. By the classification of finite alelian order at least p^{maxin.mi}. By the classification of finite alelian
groups, A= $\mathbb{Z}_{p^{\mathbf{a}}}$ x $\mathbb{Z}_{p^{\mathbf{b}}}$, where a sb, maxin.mis b and atb=n+m $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$

Claim: Unde these conditions , a SES

$$
\circ \longrightarrow \mathbb{Z}_{p^m} \xrightarrow{f} \mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^b} \xrightarrow{g} \mathbb{Z}_{p^n} \longrightarrow \text{C}
$$

always exists .

 $o \rightarrow \mathbb{Z}_{p^m} \xrightarrow{\tau} \mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^b} \xrightarrow{\sigma} \mathbb{Z}_{p^n} \longrightarrow o$ always exists.
Proof: Let h : $\mathbb{Z} \longrightarrow \mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^b}$ be the homomorphism sending 1 + o (1, p^{b-m}). It is easy to see that ker (h) = Lp^m) (Voing that b=maxin,mi) and so h induces an injective homomorphism $f \colon \mathbb{Z}_{p^{\mathsf{n}}} \longrightarrow \mathbb{Z}_{p^{\mathsf{n+m-b}}} \times \mathbb{Z}_{p^{\mathsf{b}}}$ Since $(1,p^{b-m})$ and $(0,1)$ queerate $\mathbb{Z}_{p^{h+m-b}} \times \mathbb{Z}_{p^{b}}$, the image of $(0,1)$ in coker (f) generation coker (f). Therefore, coker (f) $\cong \mathbb{Z}_{\mathsf{P}^{\mathsf{N}}}$, since both are cyclic groups of the same cardinality. The claim follows because $0 \longrightarrow M \xrightarrow{f} N \longrightarrow \text{coker}(f) \longrightarrow \infty$ in wher(f) geverater
an cyclic groups of
is alway exact if f s M Ł, N —
as aujective

 I a SES $\rho \longrightarrow \mathbb{Z} \xrightarrow{f} \beta \xrightarrow{3} \mathbb{Z}_n \longrightarrow o$ exists, then B is an abelian group of rank 1 , guerrated by at most ^G elements, so Be I ^y poup of rank 1, generated by at most 2 elements, so $B\cong\mathbb{Z}\oplus\mathbb{Z}_A'$
Let (a,b) = f(1),then the cokerel ofthe map $\phi:\mathbb{Z}^2\longrightarrow\mathbb{Z}^2$ given by (2,2) is isomorphic to ω ker(f) = \mathbb{Z}_n . It is well-known that $|\omega$ $|$ ω ω $|$ ω $|$ ω $|$ ω \rangle $|$ is isomorphic to wker (f) = \mathbb{Z}_n . It is well-known that $|\operatorname{coker}(\phi)\rangle$ = $|\det\begin{pmatrix} a \ b \end{pmatrix}\rangle$
as d $|n|$. On the other hand, if d $|n|$, the map $\mathbb{Z}\longrightarrow \mathbb{Z}\times \mathbb{Z}_d$ sending
1 to $\left(\frac{a}{\alpha},1\right)$ is injective, and 1 to $(\frac{m}{d},1)$ is injective, and its cokernel is cyclic of order n $\frac{(n,0)}{d}$ is

<u>Problem 2</u>

This follows from the reduced LES: $\ldots \longrightarrow \widehat{H}_n(A) \longrightarrow \widetilde{H}_n(X) \longrightarrow \widetilde{H}_n(X,A) \longrightarrow \widetilde{H}_{n-1}(A) \longrightarrow \ldots$

<u>Problem 3</u>

By looking at the LES

 $H_1(A) \longrightarrow H_1(X) \longrightarrow H_1(X,A) \longrightarrow H_0(A) \longrightarrow H_0(X) \longrightarrow H_0(X,A) \longrightarrow$ we see that $H_o(X,A)$ = 0 iff $H_o(A)$ \rightarrow $H_o(X)$ is surjective and that $H_1(X,A)$ = 0 i f f $H_1(A)$ \longrightarrow $H_1(X)$ is surjective and $H_0(A)$ \longrightarrow $H_0(X)$ is rujective .

So we need to analize what is the map $H_0(A) \longrightarrow H_0(X)$. Recall that for any space Y , $H_0(Y)$ is guerated by the set of path componewls of Y, and so, the map $H_0(A) \longrightarrow H_0(X)$ is just

But
$$
\mathbb{Z} \longrightarrow \bigoplus_{\text{path}} \mathbb{Z} : [p] \longmapsto [p]
$$

\ncanpends asymponants

\nand the two claims a , b , b below from this direction.

<u>Problem 4</u>

Cousider the LES $H_1(\mathbb{Q}) \longrightarrow H_1(\mathbb{R}) \longrightarrow H_1(\mathbb{R}, \mathbb{Q}) \longrightarrow \widetilde{H}_0(\mathbb{Q}) \longrightarrow \widetilde{H}_0(\mathbb{R}) \longrightarrow \widetilde{H}_0(\mathbb{R}, \mathbb{Q})$ Therefore $H_1(\mathbb{R}, \mathbb{Q}) \cong \widetilde{H}_o(\mathbb{Q}) = \bigoplus_{p \in \mathbb{Q} \setminus \{0\}} \mathbb{Z} \leq [p] - [o] \setminus p$, which has a countable basis

<u>Problem 5</u>

a) Follows from the commutativity of $(x, A) \longrightarrow (x, v) \longleftarrow (x \cdot A, V \cdot A)$ \downarrow \downarrow and the naturality of homology groups. b) $\widetilde{H}_p(x,a) \longrightarrow \widetilde{H}_p(x,y)$ is an isomorphism because $\widetilde{H}_x(\Lambda, v) = \infty$ for all i, since ACV is a deformation retract, and also using the LES of the triple (A,V,X) . $\widetilde{H}_{p}(\vec{X}\cdot A,\vec{V}\cdot A)\longrightarrow \widetilde{H}_{p}(\vec{X},\vec{V})$ is an isomophism due to excision. \cdot H_p (%, A/A) \longrightarrow Hp (%/A, ^{V/}A) is an isomorphism because, again, $\widetilde{H}_1('V/A, A/A)=0$ tri because $A\subseteq V$ is a othering deformation retract Lo important !! and again a LES of a triple. \cdot $\widetilde{H}_p(\mathbb{X}\wedge\mathbb{X}\wedge\mathbb{X}\wedge\mathbb{X})\longrightarrow H_p(\mathbb{X}_A,\mathbb{V}_A)$ is an iso due to excision. c) This is because $g: (x \cdot A, v \cdot A) \longrightarrow (x^2 A, x^4 A, x^4 A)$ is a homeomorphism of pairs. d) Recall that for a nonempty space X, $\widetilde{H}_p(x) \cong \widetilde{H_p}(x, \{pt\})$. Using the comutativity of the diagram and that everything besider the middle and left vertical arrows are an isomorphism, one checks that $\widetilde{H}_{p}(X,A) \stackrel{q_{e}}{\longrightarrow} \widetilde{H}_{p}(X/A, A/A) \subseteq \widetilde{H}_{p}(X/A)$ is an isomorphism. e) We know that there is a diagram with exact nows: $\ldots \longrightarrow \widetilde{H}_n(A) \xrightarrow{\lambda *} \widetilde{H}_n(X) \longrightarrow \widetilde{H}_n(X,A) \xrightarrow{a} \widetilde{H}_{n-1}(A) \xrightarrow{\lambda *} \ldots$ $\ldots \rightarrow \widetilde{H}_n \overset{\downarrow}{(A/A)} \longrightarrow \widetilde{H}_n \overset{\downarrow}{(X/A)} \overset{\circ}{\underset{\circ}{\longrightarrow}} \widetilde{H}_n \overset{\circ}{(X/A, A/A)} \longrightarrow \widetilde{H}_{n-1} \overset{\downarrow}{(A/A)} \longrightarrow \ldots$

so we can form the desired LES by letting $\widetilde{H_m}(x/A) \longrightarrow \widetilde{H_m}(A)$ be $\partial \circ (q_*^{-1}) \circ \delta$

<u>Problem 6:</u>

Let $A = \{Lt, x\} \in \Sigma \times : t \geq \frac{1}{4} \}$, $B = \{Lt, x\} \in \Sigma \times \{1 \leq \frac{3}{4} \}$. A and B are contractible, and {12}xX S AnB is a strong deformation attract. Since $int(A)$ u in $f(B)$ = ΣX , we can apply Mayer-Vietous:

$$
\widetilde{H}_{n+1}(A)\oplus \widetilde{H}_{n+1}(B) \longrightarrow \widetilde{H}_{n+1}(\Sigma X) \longrightarrow \widehat{H}_{n}(A \cap B) \longrightarrow \widetilde{H}_{n}(A) \oplus \widetilde{H}_{n}(B)
$$
\n
$$
\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ}
$$
\n
$$
\stackrel{\circ}{H}_{n}(X)
$$

Naturality follows because $\frac{1}{2}$ $\frac{1}{2}$ \times \times \longrightarrow Σ \times $\int f$ $\int \sum f$ $\{\lambda\} \times Y \longrightarrow \Sigma Y$

commutes.