Problem 1

If a SES $0 \longrightarrow \mathbb{Z}_{p^m} \longrightarrow A \longrightarrow \mathbb{Z}_{p^n} \longrightarrow 0$ exists, then A must be a finite group of cardinality p^{n+m} and generated by at most 2 elements. Moreover, we can see that it has an element of order at least $p^{\max^{2n,m^{\dagger}}}$. By the classification of finite abelian groups, $A \cong \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$, where $a \le b$, $\max_{n,m^{\dagger}} \le b$ and a+b=n+m. Now, let $\max_{n,m^{\dagger}} \le b \le n+m$. Note that this implies that $n+m-b \le b$.

Claim: Under these conditions, a SES

$$\circ \longrightarrow \mathbb{Z}_{p^m} \xrightarrow{\sharp} \mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^b} \xrightarrow{\mathfrak{g}} \mathbb{Z}_{p^n} \longrightarrow c$$

always exists.

Proof: Let $h: \mathbb{Z} \longrightarrow \mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^{b}}$ be the homomorphism sending 1 to $(1, p^{b-m})$. It is easy to see that $\ker(h) = (p^{m})$ (Using that $b \ge \max\{n, m\}$) and so h induces an injective homomorphism $f: \mathbb{Z}_{p^{m}} \longrightarrow \mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^{b}}$ Since $(1, p^{b-m})$ and (0, i) generate $\mathbb{Z}_{p^{n+m-b}} \times \mathbb{Z}_{p^{b}}$, the image of (0, 1)in toker(f) generater coker(f). Therefore, coker(f) $\cong \mathbb{Z}_{p^{n}}$, since both are cyclic groups of the same cardinality. The claim follows because $0 \longrightarrow M \xrightarrow{f} N \longrightarrow coker(f) \longrightarrow D$ is alway exact if f is injective.

If a SES $N \longrightarrow \mathbb{Z} \xrightarrow{f} \mathbb{B} \xrightarrow{g} \mathbb{Z}_n \longrightarrow 0$ exists, then B is an abelian group of rank 1, genericated by at most 2 elements, 20 $\mathbb{B} \cong \mathbb{Z} \oplus \mathbb{Z}_d$. Let (a,b) = f(1), then the cohernel of the map $p: \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2$ given by $\begin{pmatrix} a & d \\ b & d \end{pmatrix}$ is isomorphic to coher $(f) = \mathbb{Z}_n$. It is well-known that $|\operatorname{voker}(p)| = |\operatorname{det}\begin{pmatrix} a & 0 \\ b & d \end{pmatrix}|$, so d|n. On the other hand, if d|n, the map $\mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}_d$ sending 1 to $\begin{pmatrix} m & d \\ d & d \end{pmatrix}$ is injective, and its cohernel is cyclic of order $n\begin{pmatrix} (n,0) & i \\ a & guerator \end{pmatrix}$.

Problem 2

This follows from the reduced LES: $\dots \longrightarrow \widehat{H}_n(A) \longrightarrow \widehat{H}_n(X) \longrightarrow \widehat{H}_n(X,A) \longrightarrow \widehat{H}_{n-1}(A) \longrightarrow \dots$

By looking at the LES

 $\begin{array}{l} H_{1}(A) \longrightarrow H_{1}(X) \longrightarrow H_{1}(X,A) \longrightarrow H_{0}(A) \longrightarrow H_{0}(X) \longrightarrow H_{0}(X,A) \longrightarrow 0 \\ \text{we see that } H_{0}(X,A) = 0 \text{ iff } H_{0}(A) \longrightarrow H_{0}(X) \text{ is surjective and } H_{0}(A) \longrightarrow H_{0}(X) \text{ is surjective and } H_{0}(A) \longrightarrow H_{0}(X) \text{ is surjective } \\ H_{1}(X,A) = 0 \text{ iff } H_{1}(A) \longrightarrow H_{1}(X) \text{ is surjective and } H_{0}(A) \longrightarrow H_{0}(X) \text{ is } \\ \text{surjective } . \end{array}$

So we need to analize what is the map $H_0(A) \longrightarrow H_0(X)$. Recall that for any space Y, $H_0(Y)$ is generated by the set of path componewls of Y, and so, the map $H_0(A) \longrightarrow H_0(X)$ is just

Problem 4

Consider the LES $H_1(\mathbb{R}) \longrightarrow H_1(\mathbb{R}, \mathbb{R}) \longrightarrow \widetilde{H}_0(\mathbb{R}) \longrightarrow \widetilde{H}_0(\mathbb{R}) \longrightarrow \widetilde{H}_0(\mathbb{R}, \mathbb{R})$ " Therefore $H_1(\mathbb{R}, \mathbb{R}) \cong \widetilde{H}_0(\mathbb{R}) = \bigoplus_{\substack{p \in \mathbb{R} \setminus \log_p}} \mathbb{Z} \langle [p] - [co] \rangle$, which has a countable basis $p \in \mathbb{R} \setminus \log_p$

Problem 5

a) Follows from the commutativity of $(\mathsf{X},\mathsf{A}) \longrightarrow (\mathsf{X},\mathsf{V}) \longleftarrow (\mathsf{X},\mathsf{A},\mathsf{V},\mathsf{A})$ and the naturality of homology groups. b) · Hp (X,A) - > Hp (X,V) is an isomorphism because H. (A,V) = 0 for all i, since ACV is a deformation retract, and also using the LES of the triple (A, V, X). $\widetilde{H}_{p}(X \setminus A, V \setminus A) \longrightarrow \widetilde{H}_{p}(X, V)$ is an isomorphism due to excision. $H_{p}(X_{A}, A_{A}) \longrightarrow H_{p}(X_{A}, V_{A})$ is an isomorphism because, again, $\widetilde{H}_{i}(V|A, A|A) = 0$ Vi because $A \subseteq V$ is a strong deformation retract Lo important !! and again a LES of a triple. · Hp (*/4 \ A/A, 1/4 \ A/A) - Hp (*/A, V/A) is an iso due to excision. c) This is because $q: (X \cdot A, V \cdot A) \longrightarrow (\overset{X}{}_{A} \cdot \overset{A}{}_{A}, \overset{V}{}_{A} \cdot \overset{A}{}_{A})$ is a homeomorphism of pairs. d) Recall that for a nonempty space X, Hp(X) = Hp(X, Ep+3). Using the comutativity of the diagram and that everything besides the middle and left vertical arrows are an isomorphism, one checks that $\widetilde{H}_{p}(X,A) \xrightarrow{q_{*}} \widetilde{H}_{p}(X/A,A/A) \equiv \widetilde{H}_{p}(X/A)$ is an isomorphism. e) We know that there is a diagram with exact rows: $\dots \longrightarrow \widetilde{H}_{n}(A) \xrightarrow{\uparrow_{*}} \widetilde{H}_{n}(X) \longrightarrow \widetilde{H}_{n}(X,A) \xrightarrow{2} \widetilde{H}_{n-1}(A) \xrightarrow{i_{*}} \dots$ $\dots \rightarrow \widehat{H}_{n}(\overset{\downarrow}{A}_{A}) \longrightarrow \overset{\downarrow}{H}_{n}(\overset{\downarrow}{X}_{A}) \xrightarrow{\tilde{\ast}} \widehat{H}_{n}(\overset{\downarrow}{X}_{A}, A_{A}) \longrightarrow \overset{\downarrow}{H}_{n-1}(\overset{\downarrow}{A}_{A}) \longrightarrow \dots$

so we can form the desired LES by letting $\widetilde{H}_m(X/A) \longrightarrow \widetilde{H}_m(A)$ be $\partial \circ (q_*^{-1}) \circ \delta$

Problem 6:

Let $A = \{ [t,x] \in \Sigma X : t \ge \frac{1}{4} \}$, $B = \{ [t,x] \in \Sigma X \} t \le \frac{3}{4} \}$. A and B are contractible, and $\frac{1}{2} \frac{1}{3} \times X \le A \land B$ is a strong deformation retract. Since $int(A) \cup int(B) = \Sigma X$, we can apply Mayer-Vietoris.

$$\begin{split} & \widehat{H}_{n+1}(A) \oplus \widehat{H}_{n+1}(B) \longrightarrow \widehat{H}_{n+1}(\Sigma X) \longrightarrow \widehat{H}_{n}(A \cap B) \longrightarrow \widehat{H}_{n}(A) \oplus \widehat{H}_{n}(B) \\ & \vdots & & & & \\ & & & & \\ & & & & & \\ & &$$

commutes.